Preview

Chebyshevskii Sbornik

Advanced search

The Braun–Kemer–Razmyslov Theorem for affine PI-algebras

https://doi.org/10.22405/2226-8383-2020-21-3-89-128

About the Authors

Alexei Kanel Belov
Bar Ilan University
Israel

doctor of physical and mathematical sciences, federal professor MIPT,
professor



Louis Rowen
Bar Ilan University
Israel


References

1. S.A. Amitsur, A generalization of Hilbert Nullstellensatz, Proc. Amer. Math. Soc. {\bf 8} (1957) 649-656.

2. S.A. Amitsur, A note on P.I. rings, Israel J. Math. {10} (1971) 210--211.

3. S.A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, Ann. Mat. Pura Appl. {\bf 71} (1966) 67--72.

4. S.A. Amitsur and A. Regev: P.I. algebras and their cocharacters, J. of Algebra {\bf 78} (1982) 248--254.

5. S.A. Amitsur and L. Small, {\it Affine algebras with polynomial identities,} Supplemento ai Rendiconti del Circolo Matematico di Palermo {\bf 31} (1993).

6. A. Belov, L. Bokut, L.H. Rowen, and J.T. Yu, {\it The Jacobian Conjecture, together with Specht and Burnside-type problems}, Proc. Groups of Automorphisms in Birational and Affine Geometry, Springer, editors M.Zaidenberg, M. Rich, and M. Reizakis, to appear.

7. A.K. Belov and L.H. Rowen, {\it Computational aspects of Polynomial Identities,} A. K. Peters (2005).

8. A. Braun, The nilpotency of the radical in a finitely generated PI-ring, J. Algebra {\bf 89} (1984), 375-396.

9. M. Fayers, Irreducible Specht modules for Hecke algebras of type A, Advances in Math. {\bf 193} (2005), 438--452. 10.M. Fayers, S. Lyle, S. Martin, p-restriction of partitions and homomorphisms between Specht modules, J. Algebra {306} (2006), 175--190.

10. N. Jacobson, {\it Basic Algebra II}, second edition, Freeman and company (1989).

11. G. D. James, {\it The Representation Theory of the Symmetric Groups}, Lecture Notes in Math, Vol. 682, Springer--Verlag, New York, NY, (1978).

12. G. James and A. Mathas, {\it The irreducible Specht modules in characteristic $2$}, Bull. London Math. Soc. {\bf 31} (1999), 457--62.

13. G. D. James and A. Kerber, {\it The Representation Theory of the Symmetric group}, Encyclopedia of Mathematics and its Applications, Vol. 16, Addison--Wesley, Reading, MA, (1981).

14. A.R Kemer, Capelli identities and nilpotence of the radical of a finitely generated PI-algebra, Dokl. Akad. Nauk SSSR {\bf 255} (1980), 793-797 (Russian). English translation: Soviet Math. Dokl. {\bf 22} (1980), 750-753.

15. A.R. Kemer, Ideals of identities of associative algebras, Amer. Math. Soc. Translations of monographs {\bf 87} (1991).

16. A.R. Kemer, Multilinear identities of the algebras over a field of characteristic $p$, Internat. J. Algebra Comput. {5} no. 2, (1995), 189--197.

17. J. Lewin, A matrix representation for associative algebras I and II, Trans. Amer. Math. Soc. {188}(2), 293--317 (1974).

18. L'vov, Unpublished (Russian).

19. I.G. Macdonald, {\it Symmetric Functions and Hall Polynomials}, 2nd edition, Oxford University Press, Oxford, (1995).

20. A. Mathas, {\it Iwahori--Hecke algebras and Schur algebras of the symmetric group}, University Lecture Series 15, American Mathematical Society, Providence, RI (1999).

21. Yu.P. Razmyslov, The Jacobson radical in PI-algebras (Russian), Algebra i Logika {\bf 13} (1974), 337-360. English translation: Algebra and Logika {\bf 13} (1974), 192-204.

22. A. Regev, Existence of identities in $A\otimes B$, Israel J. Math. {\bf 11} (1972), 131--152.

23. A. Regev, The representations of $S_n$ and explicit identities for P.I. algebras, J. Algebra {\bf 51} (1978), 25--40.

24. Richard Resco, Lance W. Small and J. T. Stafford, Krull and Global Dimensions of Semiprime Noetherian $PI$-Rings Transactions of the American Mathematical Society {\bf 274, No. 1} (1982), 285--295

25. L.H. Rowen, {\it Polynomial Identities in Ring Theory}, Pure and Applied Mathematics, 84. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1980).

26. L.H. Rowen, {\it Ring Theory}, Vol. II. Pure and Applied Mathematics, 128. Academic Press, Inc., Boston, MA, (1988).

27. L.H. Rowen, {\it {Graduate algebra: CommutativeView}}, AMS Graduate Studies in Mathematics {73}, 2006.

28. L.H. Rowen, {\it {Graduate algebra: Noncommutative View}}, AMS Graduate Studies in Mathematics {91}, 2008.

29. B.E. Sagan, {\it The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions}, 2nd edition, Graduate Texts in Mathematics 203, Springer-Verlag (2000).

30. A.I. Shirshov, On certain non associative nilrings and algebraic algebras (Russian), Mat. Sb. {\bf 41} (1957), 381-394.

31. A.I. Shirshov, On rings with identity relations (Russian), Mat. Sb. {\bf 43} (1957), 277-283.

32. Small, L.W.,An example in PI rings, J. Algebra {\bf 17} (1971), 434--436.

33. K.A. Zubrilin, Algebras satisfying Capelli identities, Sbornic Math. {\bf 186} no. 3 (1995) 359-370.


Review

For citations:


Kanel Belov A., Rowen L. The Braun–Kemer–Razmyslov Theorem for affine PI-algebras. Chebyshevskii Sbornik. 2020;21(3):89-128. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-89-128

Views: 277


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)