The Braun–Kemer–Razmyslov Theorem for affine PI-algebras
https://doi.org/10.22405/2226-8383-2020-21-3-89-128
About the Authors
Alexei Kanel BelovIsrael
doctor of physical and mathematical sciences, federal professor MIPT,
professor
Louis Rowen
Israel
References
1. S.A. Amitsur, A generalization of Hilbert Nullstellensatz, Proc. Amer. Math. Soc. {\bf 8} (1957) 649-656.
2. S.A. Amitsur, A note on P.I. rings, Israel J. Math. {10} (1971) 210--211.
3. S.A. Amitsur and C. Procesi, Jacobson rings and Hilbert algebras with polynomial identities, Ann. Mat. Pura Appl. {\bf 71} (1966) 67--72.
4. S.A. Amitsur and A. Regev: P.I. algebras and their cocharacters, J. of Algebra {\bf 78} (1982) 248--254.
5. S.A. Amitsur and L. Small, {\it Affine algebras with polynomial identities,} Supplemento ai Rendiconti del Circolo Matematico di Palermo {\bf 31} (1993).
6. A. Belov, L. Bokut, L.H. Rowen, and J.T. Yu, {\it The Jacobian Conjecture, together with Specht and Burnside-type problems}, Proc. Groups of Automorphisms in Birational and Affine Geometry, Springer, editors M.Zaidenberg, M. Rich, and M. Reizakis, to appear.
7. A.K. Belov and L.H. Rowen, {\it Computational aspects of Polynomial Identities,} A. K. Peters (2005).
8. A. Braun, The nilpotency of the radical in a finitely generated PI-ring, J. Algebra {\bf 89} (1984), 375-396.
9. M. Fayers, Irreducible Specht modules for Hecke algebras of type A, Advances in Math. {\bf 193} (2005), 438--452. 10.M. Fayers, S. Lyle, S. Martin, p-restriction of partitions and homomorphisms between Specht modules, J. Algebra {306} (2006), 175--190.
10. N. Jacobson, {\it Basic Algebra II}, second edition, Freeman and company (1989).
11. G. D. James, {\it The Representation Theory of the Symmetric Groups}, Lecture Notes in Math, Vol. 682, Springer--Verlag, New York, NY, (1978).
12. G. James and A. Mathas, {\it The irreducible Specht modules in characteristic $2$}, Bull. London Math. Soc. {\bf 31} (1999), 457--62.
13. G. D. James and A. Kerber, {\it The Representation Theory of the Symmetric group}, Encyclopedia of Mathematics and its Applications, Vol. 16, Addison--Wesley, Reading, MA, (1981).
14. A.R Kemer, Capelli identities and nilpotence of the radical of a finitely generated PI-algebra, Dokl. Akad. Nauk SSSR {\bf 255} (1980), 793-797 (Russian). English translation: Soviet Math. Dokl. {\bf 22} (1980), 750-753.
15. A.R. Kemer, Ideals of identities of associative algebras, Amer. Math. Soc. Translations of monographs {\bf 87} (1991).
16. A.R. Kemer, Multilinear identities of the algebras over a field of characteristic $p$, Internat. J. Algebra Comput. {5} no. 2, (1995), 189--197.
17. J. Lewin, A matrix representation for associative algebras I and II, Trans. Amer. Math. Soc. {188}(2), 293--317 (1974).
18. L'vov, Unpublished (Russian).
19. I.G. Macdonald, {\it Symmetric Functions and Hall Polynomials}, 2nd edition, Oxford University Press, Oxford, (1995).
20. A. Mathas, {\it Iwahori--Hecke algebras and Schur algebras of the symmetric group}, University Lecture Series 15, American Mathematical Society, Providence, RI (1999).
21. Yu.P. Razmyslov, The Jacobson radical in PI-algebras (Russian), Algebra i Logika {\bf 13} (1974), 337-360. English translation: Algebra and Logika {\bf 13} (1974), 192-204.
22. A. Regev, Existence of identities in $A\otimes B$, Israel J. Math. {\bf 11} (1972), 131--152.
23. A. Regev, The representations of $S_n$ and explicit identities for P.I. algebras, J. Algebra {\bf 51} (1978), 25--40.
24. Richard Resco, Lance W. Small and J. T. Stafford, Krull and Global Dimensions of Semiprime Noetherian $PI$-Rings Transactions of the American Mathematical Society {\bf 274, No. 1} (1982), 285--295
25. L.H. Rowen, {\it Polynomial Identities in Ring Theory}, Pure and Applied Mathematics, 84. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, (1980).
26. L.H. Rowen, {\it Ring Theory}, Vol. II. Pure and Applied Mathematics, 128. Academic Press, Inc., Boston, MA, (1988).
27. L.H. Rowen, {\it {Graduate algebra: CommutativeView}}, AMS Graduate Studies in Mathematics {73}, 2006.
28. L.H. Rowen, {\it {Graduate algebra: Noncommutative View}}, AMS Graduate Studies in Mathematics {91}, 2008.
29. B.E. Sagan, {\it The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions}, 2nd edition, Graduate Texts in Mathematics 203, Springer-Verlag (2000).
30. A.I. Shirshov, On certain non associative nilrings and algebraic algebras (Russian), Mat. Sb. {\bf 41} (1957), 381-394.
31. A.I. Shirshov, On rings with identity relations (Russian), Mat. Sb. {\bf 43} (1957), 277-283.
32. Small, L.W.,An example in PI rings, J. Algebra {\bf 17} (1971), 434--436.
33. K.A. Zubrilin, Algebras satisfying Capelli identities, Sbornic Math. {\bf 186} no. 3 (1995) 359-370.
Review
For citations:
Kanel Belov A., Rowen L. The Braun–Kemer–Razmyslov Theorem for affine PI-algebras. Chebyshevskii Sbornik. 2020;21(3):89-128. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-89-128