Preview

Chebyshevskii Sbornik

Advanced search

Representing Matrices over Fields as Square-Zero Matrices and Diagonal Matrices

https://doi.org/10.22405/2226-8383-2020-21-3-84-88

Abstract

We prove that any square matrix over an arbitrary infinite field is a sum of a square-zero
matrix and a diagonalizable matrix. This result somewhat contrasts recent theorem due to
Breaz, published in Linear Algebra & Appl. (2018).

About the Author

Peter Danchev
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Bulgaria
Doctor of Mathematicks


References

1. A.N. Abyzov, {\it Strongly $q$-nil-clean rings}, Siber. Math. J. (2) \textbf{60} (2019), 197--208.

2. A.N. Abyzov and I.I. Mukhametgaliev, {\it On some matrix analogs of the little Fermat theorem}, Math. Notes (1-2) \textbf{101} (2017), 187--192.

3. S. Breaz, {\it Matrices over finite fields as sums of periodic and nilpotent elements}, Lin. Alg. \& Appl. \textbf{555} (2018), 92--97.

4. S. Breaz, G. C\v{a}lug\v{a}reanu, P. Danchev and T. Micu, {\it Nil-clean matrix rings}, Lin. Alg. \& Appl. \textbf{439} (2013), 3115--3119.

5. P.V. Danchev, {\it A generalization of $\pi$-regular rings}, Turk. J. Math. \textbf{43} (2019), 702--711.

6. P.V. Danchev, {\it On a property of nilpotent matrices over an algebraically closed field}, Che\-byshevskii Sbornik (3) \textbf{20} (2019), 400--403.

7. P.V. Danchev, {\it Certain properties of square matrices over fields with applications to rings}, Rev. Colomb. Mat. (2) {\bf 54} (2020), 109-116.

8. P. Danchev, E. Garc\'ia and M.G. Lozano, {\it Decompositions of matrices into diagonalizable and square-zero matrices}, Lin. \& Multilin. Alg. {\bf 69} (2021).

9. E. Garc\'ia, M.G. Lozano, R.M. Alc\'azar and G. Vera de Salas, {\it A Jordan canonical form for nilpotent elements in an arbitrary ring}, Lin. Alg. \& Appl. \textbf{581} (2019), 324--335.

10. D.A. Jaume and R. Sota, {\it On the core-nilpotent decomposition of trees}, Lin. Alg. \& Appl. \textbf{563} (2019), 207--214.

11. K.C. O'Meara, {\it Nilpotents often the difference of two idempotents} (unpublished draft privately circulated on

12. March 2018).

13. Y. Shitov, {\it The ring $\mathbb{M}_{8k+4}(\Z_2)$ is nil-clean of index four}, Indag. Math. \textbf{30} (2019), 1077--1078.

14. J. \v{S}ter, {\it On expressing matrices over $\Z_2$ as the sum of an idempotent and a nilpotent}, Lin. Alg. \& Appl. \textbf{544} (2018), 339--349.


Review

For citations:


Danchev P. Representing Matrices over Fields as Square-Zero Matrices and Diagonal Matrices. Chebyshevskii Sbornik. 2020;21(3):84-88. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-84-88

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)