Schnirelmann’s integral and analogy of Cauchy integral theorem for two-dimensional local fields
https://doi.org/0.22405/2226-8383-2020-21-3-39-58
Abstract
The problem studied in the thesis arose from the need to find connections between algebraic
field theory and theory of functions. The Cauchy integral theorem, which is one of the most basic
and classical results of the complex analysis, has a discrete analog in the case of one-dimensional
local fields. The natural question then arises whether it is possible to generalize the same result
to two-dimensional local fields. The present paper contains the definition of Schnirelmann’s
integral and the proof of an analog of Cauchy’s integral theorem for two-dimensional local
fields. As a consequence, links between the Hilbert symbol and Schnirelmann’s integral are
established
Keywords
About the Authors
Sergey Vladimirovich VostokovRussian Federation
Doctor of Physical and Mathematical Sciences, Professor
Timofei Yurievich Shashkov
Russian Federation
Sofya Sergeevna Afanas’eva
Russian Federation
References
1. Fesenko I.B. 1993, "Theory of local fields. Local class field theory. Multidimensional local class field theory", St. Petersburg Math. J. 4 (1993), no. 3, pp. 403–438.
2. Fesenko, I.B. Vostokov, S.V. $\&$ Zhukov, I.B. 1990, "On the theory of multidimensional local fields. Methods and constructions", Algebra i Analiz 2 (1990), no. 4, 91–118; English transl. in Leningrad Math. J. 2 (1991).
3. Hasse, Н. 1930, "Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper", Teil II: Reziprozitätsgesetz., vol.6 of Jahresber. DMV, Ergän\-zungs\-band. B. G. Teubner. IV + 204 pp.
4. Ivanov, M.A. 2013, "The product of symbols of $p^{n}$th power residues as an Abelian integral", St. Petersburg Mathematical Journal, vol. 24:2, pp. 275–281. doi/10.1090/S1061-0022-2013-01238-6
5. Kato, K. 1979, "A generalization of local class field theory by using $K$-groups. I", Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics 26, no. 2, pp. 303-376. doi/10.15083/00077072
6. Kato, K. 1980, "A generalization of local class field theory by using K-groups. II", Journal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics 27, no. 3, pp. 603–683. doi/10.15083/00077073
7. Lomadze, V.G. 1980, "On the ramification theory of two-dimensional local fields", Mathematics of the USSR-Sbornik, vol. 37:3, pp. 349–365. doi/10.1070/SM1980v037n03ABEH001957
8. Milnor J. 1971, "Introduction to algebraic K-theory", Ann. Math. Stud., no. 72, XIV, 184 pp.
9. A.N. 1975, "Class fields and algebraic $K$-theory", Uspekhi Mat. Nauk, vol. 30, no. 1, pp.253–254.
10. Parshin A.N. 1985, "Local class field theory", Proc. Steklov Inst. Math., 1985, no. 3.
11. Shafarevich I.R. 1950, “A general reciprocity law”, Mat. Sb. (N.S.), 26(68):1 (1950), pp. 113–146
12. Vostokov, S.V. 1979, "Explicit form of the law of reciprocity", Mathematics of the {USSR}-Izvestiya, vol. 13, no. 3, pp. 557–588. doi/10.1070/IM1979v013n03ABEH002077
13. Vostokov, S.V. 1986, "Explicit construction of class field theory for a multidimensional local field", Mathematics of the USSR-Izvestiya, vol.26(2):263. doi/10.1070/IM1986v026n02 ABEH001141
14. Vostokov, S.V. $\&$ Ivanov, M.A. 2012, “Cauchy’s integral theorem and classical reciprocity law”, Uch. Zap. Kazan. Univ. Ser. Fiz.-Mat. Nauki 154 (2), pp. 73–82
15. Zhukov, I. 2000, "Higher dimensional local fields", Geometry $\&$ Topology Monographs, vol. 3, pp.~5–18. doi: 10.2140/gtm.2000.3.5
Review
For citations:
Vostokov S.V., Shashkov T.Yu., Afanas’eva S.S. Schnirelmann’s integral and analogy of Cauchy integral theorem for two-dimensional local fields. Chebyshevskii Sbornik. 2020;21(3):39-58. (In Russ.) https://doi.org/0.22405/2226-8383-2020-21-3-39-58