Preview

Chebyshevskii Sbornik

Advanced search

On the trigonometric sum modulo subdivision of the real axis

https://doi.org/10.22405/2226-8383-2020-21-3-18-28

Abstract

The estimate of the trigonometric sum of the kind
$$
S=\sum_{a<t_s\leq b}e^{2\pi if(t_s)},
$$
where $a\geq 0,a\leq b$ are real numbers, $t_s$ is increasing to infinity of non-negative numbers, $f(t)$ is a smooth real function, is found.

Here also there are proved the analogues of Euler's, Sonin's, Poisson's and van der Corput's formulas for considering sum.

Let be given the sequence of $\Delta$ points
$$
0=t_0<t_1<t_2<\dots<t_s<\dots, \lim\limits_{n\to\infty}t_n=+\infty,
$$
on the positive half-axis of the real line.

For non-negative number $x$ we define the analogue of the integer part $[x]_{\Delta},$ meeting to the sequence $\Delta: [x]_{\Delta}=t_s,$ if $t_s\leq x<t_{s+1}, s\geq 0.$ The fractional part $\{x\}_{\Delta}$ is defined by the equality
$$
\{x\}_{\Delta}=\frac{x-t_s}{t_{s+1}-t_s},
$$
if $t_s\leq x<t_{s+1}, s\geq 0,$ moreover $0\leq\{x\}_{\Delta}<1.$

We define the analogue of the Bernoulli function meeting to the sequence $\Delta: \rho_\Delta(x)=0,5-$ $-\{x\}_\Delta.$

Then is valid the following analogue of the van der Corput's theorem for subdivisions.

{\sl Let $\Delta=\{t_s\}, 0=t_0<t_1<\dots<t_s<\dots, $ be a subdivision of the half-axis $t\geq 0$ of the real line, $\delta_s=t_{s+1}-t_s\geq 1, \delta(a,b)=\max\limits_{a\leq x\leq b}{\rho'_{\Delta}(x)},$ and let be given the sequence $\Delta_0=\{\mu_s\}, \quad \mu_s=0,5(t_s+t_{s+1}), s\geq 0,$ and points $a,b\in\Delta_0,$ let, also, $f'(x)$ be continuous, monotonic sign-constant in the interval $a< x\leq b,$ moreover there exists the constant $\delta$ such that $0<2\delta\delta^{-1}(a,b)<1$ and that for all $x$ from this interval is valid inequality $|f'(x)|\leq\delta.$ Then we have
$$\sum_{a<t_s\leq b}e^{2\pi if(t_s)}=\int\limits_{a}^{b}\rho'_\Delta(x)e^{2\pi if(x)}\,dx+10\theta\frac{\delta}{1-\delta\delta^{-1}(a,b)}, |\theta|\leq 1.
$$

About the Authors

Alexander Andreevich Artemov
M. V. Lomonosov Moscow State University
Russian Federation
student, Faculty of Mechanics and Mathematics


Vladimir Nikolaevich Chubarikov
M. V. Lomonosov Moscow State University
Russian Federation

doctor of physical and mathematical sciences, professor, head of the Department of mathematical and computer methods of analysis, president of the mechanics
and mathematics faculty



References

1. Vinogradov\,I.\,M. 1980. ``The method of trigonometric sums in the theory of numbers''. 2nd Edition., correct.and supplement. - Moscow.: Fizmatlit. pp. 144.

2. Vinogradov\,I.\,M. 1976. ``The special version of the method of trigonometric sums''. - Moscow.: Fizmatlit. pp. 120.

3. Van der Corput\,J.\,G. 1921. ``Zahlentheoretische Absch\"atzungen''. Math. Ann., {\bf 84}, S. 53-79.

4. Van der Corput\,J.\,G. 1922. ``Versch\"arfung der Absch\"atzung beim Teilerproblem''. Math. Ann., {\bf 87}, S. 39-65.

5. Karatsuba\,A.\,A. 1983. ``Foundations of the analytic number theory''. 2-nd ed. - M.: Fizmatlit. pp.240. 1966, {\bf 30,} \No 1.

6. Titchmarsh\, E.\,C. 1951. ``The theory of the Riemann zeta-function''. - Oxford: pp. 408.

7. Montgomery\,H.\,L. 1994. ``Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis'' - Providence, Rhode Island: 220 p.

8. Arkhipov G. I., Chubarikov V. N. 1994. ``Three Theorems from Analysis on Trigonometric Sums''. Dokl. RAS, {\bf 335,} \No 4, 407.

9. Arkhipov G. I. 2013, ``Selected Works''. - Orel: Publishing house of Oryol University, 464 с.

10. G.I., Sadovnichy V.A., Chubarikov V.N. 2004. ``Lectures on mathematical analysis''. 4th ed., Rev. - M.: Drofa. 640 с.

11. Arkhipov G.I., Karatsuba A.A., Chubarikov V.N. 1987. ``Theory of multiple trigonometric sums''. - M.: Science. Ch. ed.phys.-mat. lit. 368 с.

12. Arkhipov G. I., Chubarikov V. N., Karatsuba A. A. 2004. ``Trigonometric sums in number theory and analysis. De Gruyter expositions in mathematics''; 39 - Berlin, New York: Walter de Gruyter, pp. 554.

13. LeVeque\,W.\,J. 1953. ``On uniform distribution modulo a subdivision'', Pacific J. Math., {\bf 1}, 757-771.

14. Erd\"os\,P., Davenport\,H. 1963. ``A theorem on uniform distribution''.

15. Magyar Tud.Akad.Kutat\'o Int.K\'ozl., {\bf 8}:2, 3--11.

16. Gallagher\,P.\,X. 1974. ``A large sieve density estimate near $\sigma=1$''.

17. Invent. Math., {\bf 1}, 757--771.

18. Kuipers\,L., Niederreiter\,H. 1974. ``Uniform Distribution of Sequences''. - N.Y.,London, Sydney, Toronto: John Wiley \& Sons, \newblock М.: Наука,(2001), 418 с.


Review

For citations:


Artemov A.A., Chubarikov V.N. On the trigonometric sum modulo subdivision of the real axis. Chebyshevskii Sbornik. 2020;21(3):18-28. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-3-18-28

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)