On the values of Beatty sequence in an arithmetic progression
https://doi.org/10.22405/2226-8383-2020-21-1-364-367
Abstract
In the paper, we consider $N_d(x)=N(x;\alpha,\beta;d,a)$, $x\in\mathbb{N}$, which is the number of values of Beatty sequence $[\alpha n+\beta]$, $1\leqslant n\leqslant x$, for $\alpha>1$ irrational and with bounded partial quotients, $\beta\in[0;\alpha)$, in an arithmetic progression $(a+kd)$\textup, $k\in\mathbb{N}$. We prove the asymptotic formula $N_d(x) = \frac{x}{d} + O(d\ln^3 x)$ as $x\to\infty,$
where the implied constant is absolute. For growing difference~$d$ the~result is non-trivial provided $d\ll \sqrt{x}\ln^{-3/2-\varepsilon}x$, $\varepsilon>0$.
About the Authors
Aleksandr Vladimirovich BeguntsRussian Federation
candidate of physical and mathematical sciences, associate professor
Dmitry Viktorovich Goryashin
Russian Federation
candidate of physical and mathematical sciences, associate professor
Review
For citations:
Begunts A.V., Goryashin D.V. On the values of Beatty sequence in an arithmetic progression. Chebyshevskii Sbornik. 2020;21(1):364-367. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-1-364-367