Preview

Chebyshevskii Sbornik

Advanced search

On the values of Beatty sequence in an arithmetic progression

https://doi.org/10.22405/2226-8383-2020-21-1-364-367

Abstract

In the paper, we consider $N_d(x)=N(x;\alpha,\beta;d,a)$, $x\in\mathbb{N}$, which is the number of values of Beatty sequence $[\alpha n+\beta]$, $1\leqslant n\leqslant x$, for $\alpha>1$ irrational and with bounded partial quotients, $\beta\in[0;\alpha)$, in an arithmetic progression $(a+kd)$\textup, $k\in\mathbb{N}$. We prove the asymptotic formula $N_d(x) = \frac{x}{d} + O(d\ln^3 x)$ as $x\to\infty,$
where the implied constant is absolute. For growing difference~$d$ the~result is non-trivial provided $d\ll \sqrt{x}\ln^{-3/2-\varepsilon}x$, $\varepsilon>0$.

About the Authors

Aleksandr Vladimirovich Begunts
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences, associate professor



Dmitry Viktorovich Goryashin
Lomonosov Moscow State University
Russian Federation
candidate of physical and mathematical sciences, associate professor


Review

For citations:


Begunts A.V., Goryashin D.V. On the values of Beatty sequence in an arithmetic progression. Chebyshevskii Sbornik. 2020;21(1):364-367. (In Russ.) https://doi.org/10.22405/2226-8383-2020-21-1-364-367

Views: 629


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)