Preview

Chebyshevskii Sbornik

Advanced search

ON THE DISTRIBUTION FUNCTION OF THE REMAINDER TERM ON BOUNDED REMAINDER SETS

https://doi.org/10.22405/2226-8383-2016-17-1-90-107

Abstract

Bounded remainder sets are sets with bounded by constant independent of the number of points remainder term of the multidimensional problem of the distribution of linear function fractional parts. These sets were introduced by Hecke and studied by Erd¨os, Kesten, Furstenberg, Petersen, Szusz, Liardet and others. Currently, in one-dimensional case full description of bounded remainder intervals and exact estimates of the remainder term on such intervals are known. Also some more precise results about the remainder term are established. Among these results there are exact formulaes for maximum, minimum and average value of the remainder term, description of the remainder term as piecewise linear function, non-monotonic estimates for the remainder term, estimates of speed of attainment of the remainder term exact boundaries, etc... In the higher dimensional cases only several examples of bounded remainder sets are known. Particularly, in recent years V. G. Zhuravlev, A. V. Shutov, and A. A. Abrosimova introduce a new construction of some families of multidimensional bounded remainder sets based on exchanged toric tilings. For introduced sets we are able not only to prove the boundness of the remainder term but to compute exact values of its minimum, maximum, and average. In the present work we study more subtle property of the remainder term on bounded remainder sets based on exchanged toric tilings: its distribution function. It is proved that the remainder term is uniformly distributed only in one-dimensional case. An algorithm for computation of the normalized distribution function is given. Some structural results about this function are proved. For some two-dimensional families of bounded remainder sets their normalized distribution functions are clealy calculated.

About the Authors

A. A. Zhukova
Federal State Educational Institution of Higher Education "Russian Academy of National Economy and Public Administration under the President of Russian Federation Vladimir branch
Russian Federation

Candidate of Physical and Mathematical Sciences, head of postgraduate studies, research and international activities Department; Associate Professor, Department of Information Technology



A. V. Shutov
Federal State Educational Institution of Higher Education "Vladimir State University named after Alexander G. and Nicholay G. Stoletovs"(VlSU)
Russian Federation

Candidate of Physico-Mathematical Sciences, Associate Professor of Control and Informatics in Technical and Economic Systems. 



References

1. Bohl P. 1909. "¨Uber ein in der Theorie der s¨akutaren St¨orungen vorkommendes Problem", J. Reine Angew. Math., no. 135, pp. 189–283.

2. Day Bradley A. 1979. "Prismatoid, Prismoid, Generalized Prismoid", The American Math. Monthly, no. 86, pp. 486–490. doi:10.2307/2320427.

3. Erd¨os P. 1964. "Problems and results on diophantine approximations", Compositio Math., no. 16, pp. 52–65. doi:10.1007/BFb0074258.

4. Furstenberg H., Keynes M., Shapiro L. 1973. "Prime flows in topological dynamics", Israel J. Math., V. 14, pp. 26–38. doi:10.1007/BF02761532.

5. Grepstad S., Lev N. 2015. "Sets of bounded discrepancy for multi-dimensional irrational rotation", Geometric and Functional Analysis, V. 25, Issue 1, pp. 87–133. doi:10.1007/s00039-015-0313-z.

6. Hecke E. 1921. "Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins", Math. Sem. Hamburg Univ., no. 5, pp. 54–76.

7. Heynes A., Koivusalo H. "Constructing bounded remainder sets and cut-and-project sets which are bounded distance to lattices", Israel J. Math., (in press), http://arxiv.org/abs/1402.2125. doi:10.1007/s11856-016-1283-z.

8. Kelly M., Sadun L. 2015. "Patterns equivariant cohomology and theorems of Kesten and Oren", Bull. London Math. Soc., V. 47 (1), pp. 13–20. doi:10.1112/blms/bdu088.

9. Kesten H. 1966. "On a conjecture of Erd¨os and Sz¨usz related to uniform distribution mod 1", Acta Arithmetica, no. 12, pp. 193–212.

10. Liardet P. 1987. "Regularities of distribution", Compositio Math., V. 61, pp. 267–293.

11. Petersen K. 1973. "On a series of cosecants related to a problem in ergodic theory", Compositio Math., V. 26, pp. 313–317.

12. Rauzy G. 1982. "Nombres algebriques et substitutions", Bull. Soc. Math. France, V. 110, pp. 147–148.

13. Sierpinski W. 1910. "Sur la valeur asymptotique d’une certaine somme", Bull Intl. Acad. Polonmaise des Sci. et des Lettres (Cracovie) series A, pp. 9–11.

14. Sz¨usz R. 1954. "¨Uber die Verteilung der Vielfachen einer Komplexen Zahl nach dem Modul des Einheitsquadrats", Acta Math. Acad. Sci. Hungar, V. 5, pp. 35–39. doi:10.1007/BF02020384.

15. Weyl H. 1910. "¨Uber die Gibbs’sche Erscheinung und verwandte Konvergenzph¨anomene", Rendicontidel Circolo Mathematico di Palermo, no. 30, pp. 377–407.

16. Weyl H. 1916. " ¨Uber die Gleichverteilung von Zahlen mod. Eins", Math. Ann., Vol. 77, no. 3, pp. 313–352.

17. Abrosimova A.A. 2015. "BR-mnozhestva", Chebyshevskii sbornik, Vol. 16, pp. 8–22. (Russian).

18. Abrosimova A.A. 2011. "Mnozhestva ogranichennogo ostatka na dvumernom tore", Chebyshevskii sbornik, Vol. 12, no. 4, pp. 15–23. (Russian).

19. Abrosimova A.A. 2012. "Srednie znachenija otklonenij dlja raspredelenija tochek na tore", Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Matematika. Fizika. Belgorod: Izd-vo NIU "BelGU", Vol. 5 (124), no. 26, pp. 5–11. (Russian).

20. Zhuravlev V.G. 2010. "Geometrizacija teoremy Gekke", Chebyshevskii sbornik, Vol. 11, no. 1, pp. 125–144. (Russian).

21. Zhuravlev V.G. 2012. "Mnogomernaja teorema Gekke o raspredelenii drobnyh dolej", Algebra i analiz, Vol. 24, no. 1, pp. 1–33. (Russian). translation in St. Petersburg Mathematical Journal, 2013, 24:1, 71–97. doi:10.1090/S1061-0022-2012-01232-X.

22. Zhuravlev V.G. 2012. "Mnogogranniki ogranichennogo ostatka", Trudy matematicheskogo instituta imeni V.A. Steklova. Sovremennye problemy matematiki, no. 16, pp. 82–102. (Russian).

23. translation in Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2013, 280, suppl. 2, S71–S90. doi:10.1134/S0081543813030085.

24. Zhuravlev V.G. 2011. "Perekladyvajushhiesja toricheskie razvertki i mnozhestva ogranichennogo ostatka", Analiticheskaja teorija chisel i teorija funkcij. Zap. nauchn. sem. POMI. SPb.: POMI, Vol. 26 (392), pp. 95–145. (Russian). translation in: Journal of Mathematical Sciences (New York), 2012, 184:6, 716–745. doi:10.1007/s10958-012-0894-0.

25. Krasil’shhikov V.V. & Shutov A.V. 2011. "Opisanie i tochnye znachenija maksimuma i minimuma ostatochnogo chlena problemy raspredelenija drobnyh dolej", Matematicheskie zametki, Vol. 89 (1), pp. 43–52. (Russian). translation in Mathematical Notes, 2011, 89:1, 59–67. doi:10.1134/S0001434611010068.

26. Shutov A.V. 2011. "Dvumernaja problema Gekke–Kestena", Chebyshevskii sbornik, Vol. 12, no. 2 (38), pp. 151–162. (Russian).

27. Shutov A.V. 2013. "Mnogomernye obobshhenija summ drobnyh dolej i ih teoretiko-chislovye prilozhenija", Chebyshevskii sbornik, Vol. 14, no. 1 (45), pp. 104–118. (Russian).

28. Shutov A.V. 2007. "O minimal’nyh sistemah schislenija", Issledovanija po algebre, teorii chisel, funkcional’nomu analizu i smezhnym voprosam. Saratov, no. 4, pp. 125–138. (Russian).

29. Shutov A.V. 2013. "O skorosti dostizhenija tochnyh granic ostatochnogo chlena v probleme

30. Gekke–Kestena", Chebyshevskii sbornik, Vol. 14, no. 2 (46), pp. 173–179. (Russian).

31. Shutov A.V. 2011. "Ob odnom semejstve dvumernyh mnozhestv ogranichennogo ostatka", Chebyshevskii sbornik, Vol. 12, no. 4, pp. 264–271. (Russian).

32. Shutov A.V. 2007. "Optimal’nye ocenki v probleme raspredelenija drobnyh dolej na mnozhestvah ogranichennogo ostatka", Vestnik SamGU. Estestvennonauchnaja serija, Vol. 7 (57), pp. 168–175. (Russian).

33. Shutov A.V. 2013. "Raspredelenie drobnyh dolej linejnoj funkcii na mnozhestvah polozhitel’noj korazmernosti", Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Matematika. Fizika. Belgorod: Izd-vo NIU "BelGU", Vol. 32, no. 19 (162), pp. 134–143. (Russian).


Review

For citations:


Zhukova A.A., Shutov A.V. ON THE DISTRIBUTION FUNCTION OF THE REMAINDER TERM ON BOUNDED REMAINDER SETS. Chebyshevskii Sbornik. 2016;17(1):90-107. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-90-107

Views: 518


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)