Preview

Chebyshevskii Sbornik

Advanced search

SPHERICAL SUMS IN THE SPHERE PROBLEM

https://doi.org/10.22405/2226-8383-2013-14-2-33-49

Abstract

Here is given an analytical expression for the error term of the asymptotic formula for the number of lattice points in the sphere using a spherical trigonometric sum, that is triple sum over lattice points lying on the sphere of variable radius. Conclusion based on a threefold application of the one-dimensional Poisson summation formula with the error term. The estimation of the error term is held in an explicit form.

About the Author

L. G. Arkhipova
Московский государственный университет им. М. В. Ломоносова
Russian Federation


References

1. Chamizo F., Iwaniec H. On the Sphere Problem // Rev. Mat. Iberoamericana. 1995. Vol. 11, № 2. P. 417—429.

2. Heath-Brown D. R. Lattice points in the sphere // Number theory in progress. Pr. Int. conference. (Zacopane, Poland, 30.06–09.07, 1997.) Vol. 2: Elem. And anal. numb. Theory. Berlin: de Gruyter, 1999. P. 883—892.

3. Архипов Г. И. , Садовничий В. А. , Чубариков B. H. Лекции по математическому анализу. М.: Дрофа, 2004.

4. Виноградов И. М. Особые варианты метода тригонометрических сумм. М.: Наука, 1976.


Review

For citations:


Arkhipova L.G. SPHERICAL SUMS IN THE SPHERE PROBLEM. Chebyshevskii Sbornik. 2013;14(2):33-49. (In Russ.) https://doi.org/10.22405/2226-8383-2013-14-2-33-49

Views: 410


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)