Preview

Chebyshevskii Sbornik

Advanced search

The role of mathematics in the development of composite materials mechanics

https://doi.org/10.22405/2226-8383-2019-20-3-430-436

Abstract

The paper presents a brief overview of the history of new branches of mathematics and their impact on theoretical studies of mechanics of composite materials. The contribution of Russian and Soviet mathematicians and mechanics is shown, which allowed to create a functional basis for the study of mechanical properties of composites – new materials that have been widely used in engineering and the national economy. Composite materials were created in the second half of the twentieth century. They are multicomponent structures composed of various homogeneous materials. The most common are two-component structures of matrix and filler. Technologically, these components can constitute deterministic or random structures. By changing the structure and properties of the components, it is possible to obtain materials with predetermined macroscopic properties (effective properties) necessary for a particular application. The emergence of composite materials has caused a rapid growth of research on mechanical properties, allowing the design of these materials. These studies were conducted in both theoretical and practical terms. Theoretical studies were mainly reduced to the construction of mathematical models of the mechanical behavior of composites as structurally inhomogeneous materials.

About the Authors

Igor Konstantinovich Arkhipov

Russian Federation


Vlada Igorevna Abramova

Russian Federation


Aleksander Evgenievich Gvozdev

Russian Federation


Dmitry Vladimirovich Maliy

Russian Federation


References

1. Lomakin, V. A. (1970), Statistical problems in mechanics of deformable bodies [Statisticheskie zadachi mekhaniki tverdyh deformiruemyh tel], Nauka, Moscow, 138 p.

2. Bolotin, V. V. (1971), Application of methods of probability theory and reliability theory in construction calculations [Primenenie metodov teorii veroyatnostej i teorii nadezhnosti v raschetah sooruzhenij], Stroizdat, Moscow, 255 p.

3. Bolotin, V. V., Moskalenko, V. N. (1969), On the calculation of macroscopic constants of strongly isotropic composite materials [Primenenie metodov teorii veroyatnostej i teorii nadezhnosti v raschetah sooruzhenij], Izvestiya Akademii nauk SSSR. Mekhanika tverdogo tela, No. 3, 108 p.

4. Shermergor, T. D. (1977), Theory of elasticity of micro-homogeneous media [Teoriya uprugosti mikroneodnorodnyh sred], Nauka, Moscow, 399 p.

5. Khoroshun, L. P. (1984), Refined models of deformation of composites [Utochnennye modeli deformirovaniya kompozitov], Mechanics of composite materials, No. 5, pp. 798–804.

6. Khoroshun, L. P. (1978), Methods of the theory of random functions in problems of macroscopic properties of micro-homogeneous media [Metody teorii sluchajnyh funkcij v zadachah o makroskopicheskih svojstvah mikroneodnorodnyh sred], Applied mechanics, vol. 14, No. 2, pp. 3–17.

7. Cherepanov, G. P. (1983), Fracture Mechanics of composite materials [Mekhanika razrusheniya kompozicionnyh materialov], Nauka, Moscow, 295 p.

8. Tamuzh, V. P., Kuksenko, V. S. (1978), Micromechanics of polymer materials destruction [Mikromekhanika razrusheniya polimernyh materialov], Zinatne, Riga, 294 p.

9. Makarov, E. S., Gvozdev, A. E., Zhuravlev, et al., (2017), Application of the theory of plasticity of dilating media to the processes of compaction of powders of metal systems [Primenenie teorii plastichnosti dilatiruyushchih sred k processam uplotneniya poroshkov metallicheskih sistem], Chebyshevskii Sbornik, vol. 18, No. 4, pp. 268–284.

10. Makarov, E. S., Gvozdev, A. E., Zhuravlev, et al., (2018), Analysis of the equations of the theory of plasticity of powder metal systems [Analiz uravnenij teorii plastichnosti poroshkovyh metallicheskih sistem], Chebyshevskii Sbornik, vol. 19, No. 1, pp. 152–166.

11. Zhuravlev, G. M., Gvozdev, A. E., Kolmakov, A. G., et al., (2018), Application of the mathematical method of local variations for solving problems of plastic shaping of metal, powder and nanocomposite materials [Primenenie matematicheskogo metoda lokal’nyh variacij dlya resheniya zadach plasticheskogo formoizmeneniya metallicheskih, poroshkovyh i nanokompozicionnyh materialov], Chebyshevskii Sbornik, vol. 19, No. 4, pp. 43–54.

12. Gvozdev, A. E., Bogolyubova, D. N., Sergeev, N. N., et al., (2015), Features of softening processes of aluminum, copper, and their alloys under hot deformation [Osobennosti protekaniya processov razuprochneniya pri goryachej deformacii alyuminiya, medi i ih splavov], Inorganic Materials: Applied Research, vol. 6, No. 1, pp. 32–40.

13. Gvozdev, A. E., Zhuravlev, G. M., Kuzovlev, O. V. (2018), Fundamentals of formation of the state of high deformation ability of metal systems [Osnovy formirovaniya sostoyaniya vysokoj deformacionnoj sposobnosti metallicheskih sistem], TulGU, Tula, 382 p.

14. Beran, Mark J. (1968), Statistical Continuum Theories, Interscience Publishers Inc., New York, 439 p.

15. Hill, R. (1968), A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids, vol. 13, No. 4, pp. 213–222.

16. Kröner, E. (1958), Kontinuumstheorie der Versetzungen und Eigenspannungen, Springer-Verlag, Berlin, 180 p.

17. Kröner, E. (1975), Elastostatik statistisch aufgebauter Körper. Zeitschrift für Angewandte Mathematik und Mechanik, vol. 55, No. 4, pp. 39–43.

18. Yeh, R. H. T. (1972), Variational principles for linear anisotropic composites. Physics, vol. 58, p. 419.


Review

For citations:


Arkhipov I.K., Abramova V.I., Gvozdev A.E., Maliy D.V. The role of mathematics in the development of composite materials mechanics. Chebyshevskii Sbornik. 2019;20(3):430-436. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-430-436

Views: 346


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)