The Jacobian Conjecture for the free associative algebra (of arbitrary characteristic)
https://doi.org/10.22405/2226-8383-2019-20-3-390-393
Abstract
The object of this note is to use PI-theory to simplify the results of Dicks and Lewin [4] on the automorphisms of the free algebra F{X}, namely that if the Jacobian is invertible, then every endomorphism is an epimorphism. We then show how the same proof applies to a somewhat wider class of rings.
References
1. Belov, A., Bokut, L., Rowen, L., and Yu, J.-T., The Jacobian Conjecture, together with Specht and Burnside-type problems, Automorphisms in Birational and Affine Geometry (Bellavista Relax Hotel, Levico Terme -Trento, October 29th – November 3rd, 2012, Italy), Springer Proceedings in Mathematics & Statistics, 79, Springer Verlag, 2014, 249–285, ISBN 978-3-319-05681-4, http://link.springer.com/chapter/10.1007/978-3-319-05681-4_15, arXiv: 1308.0674
2. Belov, A. and Rowen, L.H. Computational Aspects of Polynomial Identities, Research Notes in Mathematics 9, AK Peters, 2005.
3. Cohn, P.M., Free Ideal Rings and Localization
4. Dicks, W. and Lewin,J., A jacobian conjecture for free associative algebras, Communications in Algebra 10:12 (1982) 1285-1306.
5. Krause, G.R., and Lenagan, T.H., Growth of Algebras and Gelfand-Kirillov Dimension, Amer. Math. Soc. Graduate Studies in Mathematics 22 (2000).
6. Orzech, M. and Ribes, L., Residual Finiteness and the Hopf Property in Rings, Journal of Algebra 15 (1970), 81–88.
7. Orzech, M., Onto endomorphisms are isomorphosms, Amer. Math. Monthly 78 (1971), 357–362.
8. Rowen, L.H. and Small, L., Representable rings and GK dimension (2015).
9. Schofield, A., Representations of rings over skew fields, LMS Lecture note series 92 1985, 223 pages.
Review
For citations:
Belov-Kanel A.Ya., Rowen L., Jie-Tai Yu. The Jacobian Conjecture for the free associative algebra (of arbitrary characteristic). Chebyshevskii Sbornik. 2019;20(3):390-393. https://doi.org/10.22405/2226-8383-2019-20-3-390-393