Preview

Chebyshevskii Sbornik

Advanced search

On a version of Hadamard’s method in the theory of Dirichlet’s L-functions

https://doi.org/10.22405/2226-8383-2019-20-3-

Abstract

In the paper a new version of the Hadamard’s method in the theory of Dirichlet’s L-functions
is given. We prove of this method of the absence of the L-functions zeroes on the unit line. We
show that the Hadamard’s method allow to get results, which on the accuracy correspond to the
Vallee Poussin results in the asymptotical law of the distribution of primes. Of this we extend
possibilities of the Hadamard’s method. New estimations of the zeta-sum twisted together with
the Dirichlet’s character by modulo, equals to the degree of an odd prime number are obtained
that permits to get the modern limit of zeroes for the corresponding Dirichlet’s L-function.

About the Authors

Olga Viktorovna Kolpakova

Russian Federation


O. V. Popov

Russian Federation


Vladimir Nikolaevich Chubarikov

Russian Federation


References

1. Euler, L. 1936, “Introduction to the infinitesimal analysis”, Moscow, in Russian.

2. Riemann, B. 1948, “Works ”, Moscow, pp. 216–224.

3. Hadamard, J. 1896, “Sur la distribution des zéros de la function ζ(s) et conséquencies arithmetiques”, Bull. Soc. Math. France, 24.

4. de la Valleé Poussin C. J. 1896, “Recherches analytiques sur la theorie des nombres. Premiere partie: La fonction ζ(s) de Riemann et les nombres premiers general”, Ann. Soc. Sci. Bruxelles, bf 20, pp. 183–256.

5. de la Valleé Poussin, C. J. 1899–1900, “Sur la fonction ζ(s) de Riemann et le nombre des nombres premiers inférieurs à une limite donnée”, Memories couronnes de l’Acad. Roy. des Sci. Belgique, 59, № 1.

6. Weyl, H. 1921, “Zur Abschätzung von ζ(1 + it)”, Math. Zs. bf 10, pp. 88–101.

7. Littlewood, J. E. 1922, “Researches in the theory of Riemann ζ -function”, Proc. London Math. Soc., (2)20, XXII–XXVIII.

8. Landau, E. 1924, “Über die ζ -Funktion und die L-Funktion”, Math. Zs., 20, pp. 105–125.

9. Titchmarsch, E. C. 1953, “The theory of the Riemann zeta-function”, Moscow.

10. Chudakov, N. G. 1936, “On zeros of the Dirichlet L-functions”, Matem. Sb., 1(43), pp. 591–602.

11. Chudakov, N. G., 1936, “On zeros of the ζ(s) function”, Doklady AN SSSR, pp. 187–201.

12. Vinogradov, I. M., 1958, “A new estimation of the function ζ(1+it)”, Izv. AN SSSR, Ser.matem., 22, № 2, pp. 161–164.

13. Vinogradov, I. M. 1980, “The method of trigonometrical sums in the theory of numbers”, 2nd ed., correct. and supplement: Moscow, pp. 144.

14. Korobov, N. M. 1958, “On zeros of the ζ(s) function”, Doklady AN SSSR, 118, pp. 231–232.

15. Korobov, N. M. 1958, “Estimations of trigonometric sums and their applications”, Uspehi matem. nauk, 13, issue 4, pp. 185–192.

16. Richert, H.-E. 1967, “Zur Abschätzung der Riemannschen Zeta-funktion in der Nahe der Vertikalen σ = 1”, Math. Ann., 169, № 2, pp. 97–101.

17. Karatsuba, A. A. 1971, “Estimations of trigonometric sums by the Vinogradov method and their applications”, Trudy MIAN SSSR, 112, pp. 241–255.

18. Arkhipov, G., Buriev, K. 1993, “Refinement of estimates for the Riemann zeta-function in a neibourhood of the line Re(s) = 1”, Integral Transforms and Special Functions, v. 1, № 1, pp. 1–7.

19. Davenport, H. 1971, “Multiplicative number theory”, Moscow, pp. 200.

20. Voronin, S. M., Karatsuba, A. A. 1994, “The Riemann zeta-function”, Moscow, pp. 376.

21. Karatsuba, A. A. 1983, “The foundation of the analytic number theory”, Moscow, pp. 240.

22. Popov, O. V. 1993 “On Hadamard’s method concerning zeros of the Riemann zeta-function”, Integral Transforms and Special Functions, v. 1, № 2, pp. 143–144.

23. Popov, O. V. 1994, “The deduction of the modern limit of zeros of the Riemann zeta-function by the Hadamard method”, Vestnik MSU, ser. 1,mat.,mech., № 1, pp. 51–54.

24. Postnikov, A. G. 1955, “On the character sum by modulo, equil to a degree of prime”, Izv. AN SSSR, ser. mat., v. 19, pp. 11–16.

25. Rozin, S. M. 1959, “On zeros of the Dirichlet L-series”, Izv. AN SSSR, ser. mat., v. 23, pp. 503–508.

26. Karatsuba, A. A. 1964, “Trigonometric sums of the special form and their aplications”, Izv. AN SSSR, ser. mat., v. 28, pp. 237–248.

27. Chudakov, N. G. 1966, “On zeros of the Dirichlet L-functions for modulo, equal to degrees of an odd prime”, Vest. LSU, ser. mat.,mech., № 1, pp. 93–98.

28. Chubarikov, V. N. 1973, “ A more precise boundary of zeros of the Dirichlet L-series by modulo, equal to degree of an prime”, Vest. MSU, ser. mat.,mech., № 2, pp. 46–52.


Review

For citations:


Kolpakova O.V., Popov O.V., Chubarikov V.N. On a version of Hadamard’s method in the theory of Dirichlet’s L-functions. Chebyshevskii Sbornik. 2019;20(3):282-295. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-

Views: 352


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)