ON THE ZEROS OF THE RIEMANN ZETA FUNCTION, LYING IN ALMOST ALL SHORT INTERVALS OF THE CRITICAL LINE
https://doi.org/10.22405/2226-8383-2016-17-1-71-89
Abstract
In this paper, we study the distribution of non-trivial zeros of the Riemann zeta function ζ(s), which are on the critical line ℜs = 1/2. On the half-plane ℜs > 1, the Riemann zeta function is defined by Dirichlet series ζ(s) = X+∞ n=1 n−s, and it can be analytically continued to the whole complex plane except the point s = 1. It is well-known that the non-trivial zeros of the Riemann zeta function are symmetric about the real axis and the line ℜs = 1/2. This line is called critical. In 1859, Riemann conjectured that all non-trivial zeros of the Riemann zeta function lie on the critical line ℜs = 1/2. Hardy was the first to show in 1914 that ζ(1/2 + it) has infinitely many real zeros. In 1942, Selberg obtained lower bound of the correct order of magnitude for the number zeros of the Riemann zeta functions on intervals of critical line [T, T +H],H = T0.5+ε, where ε — an arbitrary small constant. In 1984, A. A. Karatsuba proved Selberg’s result for shorter intervals of critical line [T, T + H],H = T27/82+ε. It is difficult to reduce the length of interval, which was pointed out above. However, if we consider this problem on average, then it was solved by Karatsuba. He proved that almost all intervals of line ℜs = 1/2 of the form [T, T+Xε], where 0 < X0(ε) < X 6 T 6 2X, contain more than c0(ε)Tε ln T zeros of odd orders of the function ζ(1/2+it). In 1988, Kicileva L. V. obtained result of this kind, but for the averaging intervals (X,X + X11/12+ε). In this paper, the length of the averaging interval has reduced. We proved Karatsuba’s result for interval (X,X + X7/8+ε).
About the Author
Do Duc TamRussian Federation
postgraduate. Belgorod National Research University
References
1. Riemann, B. 1948, “Xachinenia.” (Russian) [The works], OGIZ, Moskva–Leningrad. 479 p.
2. Hardy, G. H. & Littlewood, J. E. 1921. “The zeros of Riemann’s zeta-function on the critical line”, Mathematische Zeitschrift, vol. 10, pp. 283–317.
3. Selberg, A. 1942, “On the zeros of Riemann’s zeta-function”, Skr. Norske. Vid. Akad Oslo, vol. 10, pp. 1–59.
4. Karatsuba, A. A. 1981, “On the distance between consecutive zeros of the Riemann zeta function that lie on the critical line”, Trudy Mat. Inst. Steklov, vol. 157 , pp. 49-63. (Russian)
5. Karatsuba, A. A. 1984, “On the zeros of the function ζ(s) on short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol 48, no 3, pp. 569–584. (Russian)
6. Karatsuba, A. A. 1984, “The distribution of zeros of the function ζ(1/2+it)”, Izv. Akad. Nauk SSSR. Ser. Math., vol 48, no 6, pp. 1214–1224. (Russian)
7. Karatsuba, A. A. 1985, “Zeros of the Riemann zeta function on the critical line”, Trudy Mat. Inst. Steklov, vol. 167 , pp. 167–178. (Russian)
8. Karatsuba, A. A. 1985, “On the real zeros of the function ζ(1/2 + it)”, Uspekhi Mat. Nauk, vol. 40, no 4, pp. 171–172. (Russian)
9. Karatsuba, A. A. 1985, “The Riemann zeta function and its zeros”, Uspekhi Mat. Nauk, vol. 40, no 5, pp. 23-82. (Russian)
10. Karatsuba, A. A. 1992, “On the number of zeros of the Riemann zeta-function lying in almost all short intervals of the critical line”, Izv. Akad. Nauk SSSR. Ser. Math., vol 56, no 2, pp. 372-397. (Russian)
11. Karatsuba, A. A. 1992, “A refinement of theorems on the number of zeros lying on intervals of the critical line of certain Dirichlet series”, Uspekhi Mat. Nauk, vol. 47, no 2, pp. 193-194. (Russian)
12. Kiseleva, L. V. 1988, “The number of zeros of the function ζ(s) on "almost all” short intervals of the critical line.” (Russian) Izv. Akad. Nauk SSSR Ser. Mat., vol. 52, no. 3, pp. 479–500; translation in Math. USSR-Izv. 32 (1989), no. 3, 475–499
13. Malysev, A. V. 1962, “On the representation of integers by positive quadratic forms.” (Russian) Trudy Mat. Inst. Steklov, vol. 65, pp. 3–212.
14. Titchmarsh, E. K. 1953, “Teoriya dzeta-funkcii Rimana.” (Russian)[Теория дзета-функции Римана], Mir, Moscow, 409 p.
15. Karatsuba, A. A. 1983, “Osnovui analiticheskoi teorii chisel.” (Russian) [Fundamentals of analytic number theory], Nauka, Мoscow, 240 p.
16. Voronin, S. V. & Karatsuba, A. A. 1994, “Zeta-funkcia Rimana.” (Russian) [The Riemann zeta-function], Fizmatlit, Moscow, 376 p.
17. Karatsuba, A. A. 1994, “A new approach to the problem of the zeros of some Dirichlet series.” (Russian) Trudy Mat. Inst. Steklov., vol. 207, pp. 180–196; translation in Proc. Steklov Inst. Math. 1995, no. 6 (207), 163–177.
Review
For citations:
Tam D. ON THE ZEROS OF THE RIEMANN ZETA FUNCTION, LYING IN ALMOST ALL SHORT INTERVALS OF THE CRITICAL LINE. Chebyshevskii Sbornik. 2016;17(1):71-89. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-71-89