Preview

Chebyshevskii Sbornik

Advanced search

About three-dimensional nets of Smolyak I

https://doi.org/10.22405/2226-8383-2019-20-3-193-219

Abstract

The work refers to the analytical theory of numbers and it deals with the application of number theory to problems of approximate analysis. The concept of the hyperbolic parameter of grids with weights and the analogue of Bakhvalov’s theorem for the hyperbolic parameter of grids with weights and the hyperbolic Zeta function of grids are considered. In this paper the following results are obtained:
1. a strengthened generalized Bakhvalov–Korobov theorem for the hyperbolic Zeta function of three-dimensional grids is proved;
2. the number of nodes of the resin grid is calculated taking into account their multiplicity; the number of nodes taking into account their weights.
3. the number of nodes of the resin grid is calculated without taking into account their multiplicity;
4. the number of nodes of the resin grid is calculated taking into account their weights;
5. the form of a quadrature formula with a resin grid without multiple nodes is found and explicit formulas for the weights of this quadrature formula are found. It is shown that the number of nodes of such a quadrature formula is 7 times less than in the case of a formula with multiple nodes.

About the Authors

Nikolai Nikolaevich Dobrovol’sky

Russian Federation

candidate of physical and mathematical sciences, associate professor of the department of applied mathematics and computer science, Tula State University; associate professor of the department of algebra, mathematical analysis and geometry, Tula State L. N. Tolstoy Pedagogical University (Tula).



Dmitry Viktorovich Gorbachev
Tula State University (Tula)
Russian Federation

Doctor of physical and mathematical sciences, Professor, Department of Applied Mathematics and Computer Science



Valerii Ivanovich Ivanov
Tula State University (Tula)
Russian Federation

Doctor of physical and mathematical sciences, Professor, Head of the Department of Applied Mathematics and Computer Science



References

1. Hammersley, J. M., 1960, “Monte-Carlo methods for sobving multivariable problems”, Ann. New York Acad. Sci., vol. 86, 844–874.

2. Bakhvalov, N.S. 1959, “On approximate computation of multiple integrals” , Vestnik Moskovskogo universiteta, no. 4, pp. 3–18.

3. Weyl H., 1916, “On the uniform distribution of Numbers mod. one”, Math. Ann., vol. 77, pp. 313–352.

4. Vronskaya, G.T. & Dobrovol’skii, N. N. 2012, Otklonenie ploskikh setok [Standard deviation of a flat mesh], Izdatel’stvo TGPU im. L.N.Tolstogo, Tula, Russia.

5. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, Mnogomernye teoretiko-chislovye setki i reshyotki i algoritmy poiska optimal’nykh koehffitsientov [Multidimensional number-theoretic grids and lattices and algorithms for finding optimal coefficients], Izdatel’stvo Tul’skogo gosudarstvennogo pedagogicheskogo universiteta im. L.N. Tolstogo, Tula, Russia. 284 p.

6. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N. 2012, “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients” , Chebyshevskij sbornik, vol. 13, no. 4(44), pp. 4–107.

7. Dobrovol’skaya, L. P., Dobrovol’skii, N. M., Dobrovol’skii, N. N., Ogorodnichuk, N. K., Rebrov, E. D. & Rebrova, I. YU. 2012, “Some questions of the number-theoretic method in the approximate analysis” , Trudy X mezhdunarodnoj konferentsii “Аlgebra i teoriya chisel: sovremennye problemy i prilozheniya” Uchenye zapiski Orlovskogo gosudarstvennogo universiteta [Proceedings of the X international conference "Algebra and number theory: modern problems and applications"scientific notes of Orel state University], no. 6, part 2, pp. 90-98.

8. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M., Dobrovol’skii, N. N., & Rebrova, I. YU. 2013, “Some questions of the number-theoretic method in the approximate analysis” , Izvestie Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, vol.13, no. 4(2), pp. 47-52.

9. Dobrovol’skaya, L. P., Dobrovol’skii, N. M. & Simonov, А.S. 2008, “On the error of approximate integration over modified grids” , Chebyshevskij sbornik, vol. 9, no. 1(25), pp. 185–223.

10. Dobrovol’skii, M. N. 2003, “Estimates of sums over a hyperbolic cross” , Izvestie Tul’skogo gosudarstvennogo universiteta. Seriya: Matematika. Mekhanika. Informatika, vol.9, no. 1, pp. 82-90.

11. Dobrovol’skii, N. M. 1984, “The hyperbolic Zeta function of lattices” , Dep. v VINITI, no. 6090–84.

12. Dobrovol’skii, N. M. 1984, “Evaluation of generalized variance parallelepipedal grids” , Dep. v VINITI, no. 6089–84.

13. Dobrovol’skii, N. M. 1984, “On quadrature formulas in classes $$E^\alpha_s(c)$$ и $$H^\alpha_s(c)$$” , Dep. v VINITI, no. 6091–84

14. Dobrovol’skii, N. M., Esayan, А.R. & Yafaeva, R. R. 2002, “On grids of Smolyak S. A.” , Sovremennye problemy matematiki, mekhaniki, informatiki: Tezisy dokladov Vserossijskoj nauchnoj konferentsii, Tula, Russia, pp. 18–20.

15. Dobrovol’skii, N. M. & Manokhin, E.V. 1998, “Banach spaces of periodic functions” , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 4, no. 3, pp. 56–67.

16. Dobrovol’skii, N. M., Manokhin, E.V., Rebrova, I. YU. & Roshhenya, А. L., 2001, "On the continuity of the Zeta function of a grid with weights" , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 7, no. 1., pp. 82–86.

17. Dobrovol’skii, N. N. 2003, “On the number of integer points in a hyperbolic cross at the values of 1<= t < 21” , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 9, no. 1, pp. 91–95.

18. Dobrovol’skii, N. N. 2007, “Deviation of two-dimensional Smolyak grids” , Chebyshevskij sbornik, vol. 8, no. 1(21), pp. 110–152.

19. Dobrovol’skii, N. N. 2007, “A trigonometric polynomial on a grid of Smolyak”, Materialy mezhdunarodnoj nauchnoj konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki” [Proceedings of the international scientific conference “Modern problems of mathematics, mechanics, computer science”], Tula, Russia, pp. 34–36.

20. Dobrovol’skii, N. N., 2013, "О гиперболическом параметре сетки" , Izvestiya TulGU. Seriya Matematika. Mekhanika. Informatika, vol. 2. P. 1. P. 6–18.

21. Dobrovol’skii, N. N., 2014, Hyperbolic parameter of meshes with weights and its application, Ph.D. Thesis, Moscow State University, Moscow, Russia.

22. Kiseleva O. V., 2007, "On the Korobov problem for modified resin grids" , Chebyshevskij sbornik, vol. 8, no. 4(24), pp. 50–104.

23. Korobov, N. M., 1957, “Approximate evaluation of multiple integrals by using methods of the theory of numbers”, Doklady Аkademii nauk SSSR, vol. 115, no. 6, pp. 1062–1065.

24. Korobov, N. M., 1959, “The evaluation of multiple integrals by method of optimal coefficients”, Vestnik Moskovskogo universiteta, no. 4, pp. 19–25.

25. Korobov, N. M., 1959, “On approximate computation of multiple integrals”, Doklady Аkademii nauk SSSR, vol. 124, no. 6, pp. 1207–1210.

26. Korobov, N. M., 1960, “Properties and calculation of optimal coefficients”, Doklady Аkademii nauk SSSR, vol. 132, no. 5, pp. 1009–1012.

27. Korobov, N. M., 1963, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], Fizmat-giz, Moscow, Russia.

28. Korobov, N.M. 1994, “Quadrature formulas with combined grids”, Matematicheskie zametki, vol. 55, no. 2, pp. 83–90.

29. Korobov, N.M. 2004, Teoretiko-chislovye metody v priblizhennom analize [Number-theoretic methods in approximate analysis], 2nd ed, MTSNMO, Moscow, Russia.

30. I. Yu. Rebrova, V. N. Chubarikov, N. N. Dobrovol’skii, M. N. Dobrovol’skii, N. M. Dobrovol’skii, 2018, "On classical number-theoretic nets" , Chebyshevskii sbornik, vol. 20, no. 3, pp. 118–176.

31. Smolyak, S. А., 1963, “Quadrature and interpolation formulas on tensor products of some classes of functions”, Doklady Аkademii nauk SSSR, vol. 148, no. 5, pp. 1042–1045.

32. Sobol’, I. M., 1969, Mnogomernye kvadraturnye formuly i funktsii Khaara [Multidimensional quadrature formulas and Haar functions], Nauka, Moscow, USSR.

33. Frolov, K. K., 1976, “Upper bounds on the error of quadrature formulas on classes of functions”, Doklady Аkademii nauk SSSR, vol. 231, no.4, pp. 818–821.

34. Frolov, K. K., 1979, Quadrature formulas on classes of functions, Ph.D. Thesis, Vychislitel’nyj tsentr Аkademii Nauk SSSR, Moscow, USSR.

35. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.

36. Dobrovol’skaya, L. P., Dobrovol’skii, M. N., Dobrovol’skii, N. M. & Dobrovol’skii, N. N., 2014, “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, vol. 211, pp. 23–62. http://dx.doi.org/10.1007/978-3-319-03146-0_2

37. Faure, H., 1982, “Discrepance de suites associees a un systeme denumeration (en dimentions)”, Acta Arith, vol. 41, pp. 337–351.

38. Halton, J. H., 1960, “On the efficiency of certain quasirandom sequences of points in evaluating multidimensional integrals”, Numerische Math, vol. 27, no. 2, pp. 84–90.

39. Hammersley, J. M., 1960, “Monte-Carlo methods for sobving multivariable problems”, Ann. New York Acad. Sci., vol. 86, 844–874.

40. Weyl H., 1916, “On the uniform distribution of Numbers mod. one”, Math. Ann., vol. 77, pp. 313–352.


Review

For citations:


Dobrovol’sky N.N., Gorbachev D.V., Ivanov V.I. About three-dimensional nets of Smolyak I. Chebyshevskii Sbornik. 2019;20(3):193-219. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-193-219

Views: 504


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)