Preview

Chebyshevskii Sbornik

Advanced search

On behavior of arithmetical functions, related to Chebyshev function

https://doi.org/10.22405/2226-8383-2019-20-3-154-164

Abstract

Many problems of Number Theory are connected with investigation of   Dirichlet series $$f(s)=\sum_{n=1}^{\infty} a_nn^{-s}$$ and the  adding functions $$\Phi(x)=\sum_{n\leq x} a_n$$ of their coefficients. The most famous Dirichlet series is the   Riemann zeta function $$\zeta(s),$$  defined for any $$s=\sigma+it$$ with $$\Re s=\sigma> 1$$ as $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}.$$ The square of zeta function $$\zeta^{2}(s)=\sum_{n=1}^{\infty}\frac{\tau(n)}{n^s}, \,\, \Re s > 1,$$ is connected with  the  divisor function $$\tau (n)=\sum_ { d | n } 1,$$  giving the number of a  positive integer divisors of positive integer number n. The adding  function of the Dirichlet series  $$\zeta^2(s)$$ is the function $$D (x)=\sum_ { n\leq x}\tau(n)$$;   the  questions of the asymptotic behavior of this function  are known as  Dirichlet divisor problem. Generally, $$ \zeta^{k}(s)=\sum_{n=1}^{\infty}\frac{\tau_k(n)}{n^s}, \,\, \Re s > 1, $$ where function $$\tau_k (n)=\sum_{n=n_1\cdot...\cdot n_k}  1$$  gives the number of representations  of a  positive integer number  n as a product  of k  positive integer factors. The adding function of the Dirichlet series  $$ \zeta^k (s)$$ is the function  $$D_k (x)=\sum_ { n\leq x}\tau_k(n)$$;  its research   is known as the   multidimensional Dirichlet divisor problem.  The logarithmic derivative  $$\frac{\zeta^{'}(s)}{\zeta(s)}$$ of zeta function can be represented as $$\frac{\zeta^{'}(s)}{\zeta(s)}=-\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$ $$\Re s >1.$$ Here  $$\Lambda(n)$$ is the  Mangoldt function, defined as $$\Lambda(n)=\log p,$$ if $$n=p^{k}$$ for a prime number p and a positive integer number k, and as  $$\Lambda(n)=0,$$ otherwise. So, the  Chebyshev function $$\psi(x)=\sum_{n\leq x}\Lambda(n)$$ is the adding function of the coefficients of the Dirichlet series $$\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s},$$ corresponding to logarithmic derivative  $$\frac{\zeta^{'}(s)}{\zeta(s)}$$ of zeta function. It is well-known in analytic Number Theory and  is closely connected with many important number-theoretical problems, for example, with  asymptotic law of distribution of prime numbers. In particular, the following representation of  $$\psi(x)$$  is very useful in many applications: $$\psi(x)=x-\sum_{|\Im \rho|\leq T}\frac{x^{\rho}}{\rho}+O\left(\frac{x\ln^{2}x}{T}\right), $$ where x=n+0,5, $$n \in\mathbb{N},$$ $$2\leq T \leq x,$$  and $$\rho=\beta+i\gamma$$ are  non-trivial zeros of zeta function,  i.e., the zeros of $$\zeta(s),$$ belonging to the critical strip 0 < Res < 1.  We  obtain similar representations over non-trivial zeros of zeta function for an arithmetic function, relative to the Chebyshev function: $$\psi_{1}(x)=\sum_{n\leq x}(x-n)\Lambda(n).$$ In fact, we prove the following theorem: $$\psi_1(x)=\frac{x^2}{2}-\left(\frac{\zeta^{'}(0)}{\zeta(0)}\right)x-\sum_{|\Im \rho|\leq T}\frac{x^{\rho+1}}{\rho(\rho+1)}+O\left(\frac{x^{2}}{T^2}\ln^2 x\right)+O\left(\sqrt{x}\ln^2x\right), $$ where x > 2, $$T \geq 2,$$ and  $$\rho=\beta+i\gamma$$ are  non-trivial zeros of zeta function, i.e., the zeros of $$\zeta(s),$$ belonging to the critical strip 0 < Res < 1.

About the Authors

Sergey Aleksandrovich Gritsenko
Lomonosov Moscow state University (Moscow)
Russian Federation

doctor of physical and mathematical sciences, professor of mathematical and computer methods of analysis department



Elena Ivanovna Deza
Moscow Pedagogical State University (Moscow)
Russian Federation

doctor of pedagogical sciences, candidate of physical and mathematical science, professor of the department of theoretical computer science and discrete mathematics



Lidiya Vladimirovna Varukhina
Moscow Pedagogical State University (Moscow)
Russian Federation


References

1. Deza, E. I., Varukhina, L. V. 2018, ”Problems of the summation of arithmetical functions, relative to Chebyshev function“, Chebyshevskii sbornik, Vol. 19, N 2, pp. 319–333.

2. Borevich, Z. I. & Shafarevich, I. R. 1985, ”Theory of numbers“, M.: Nauka.

3. Vinogradov, I. M. 1981, ”Bases of the theory of numbers“, M.: Nauka.

4. Voronin, S. M. & Karatsuba, A. A. 1994, ”Riemann zeta function“, M.: Fizmatlit.

5. Karatsuba, A. A. 1972, ”Uniform estimate of error term in Dirichlet divisor problem“, Izv. Acad. of Sci. SSSR, Math., Vol. 36, N 3, pp. 475–483.

6. Karatsuba, A. A. 1983, ”Bases of the analytical theory of numbers“, M.: Nauka.

7. Panteleeva (Deza), E. I. 1988, ”Dirichlet divisor problem in number fields“, Mathematical notes, Vol. 44, issue 4, pp. 494–505.

8. Panteleeva (Deza), E. I. 1993, ”A remark to Divisor problem“, Mathematical notes, Vol. 53, issue 4, pp. 148–152.

9. Panteleeva (Deza), E. I. 1994, ” Average values of some arithmetic functions“, Mathematical notes, Vol. 55, issue 5, pp. 7–12.

10. Panteleeva (Deza), E. I. 2001, ”Dirichlet divisor problem in the ring of the Gaussian integers“, Works of MPGU, N 4, pp. 23–34.

11. Panteleeva (Deza), E. I.& Varukhina, L. V. 2000, ”Estimations of adding function of Dirichlet series“, in Scientific works of mathematical department of MPGU, M.: MPGU, pp. 45–56.

12. Panteleeva (Deza), E. I. & Varukhina L. V. 2013, ”On estimation of zeta sums and Dirichlet divisor problem“, Issue of St. Petersburg University, Series 1, issue 4, pp. 15–24.

13. Prahar, K. 1967, ”Distribution of prime numbers“, M.: Mir.

14. Titchmarsh, E. K. 1953, ”The theory of the Riemann zeta function“, M.: IL.

15. Titchmarsh, E. K. 1980, ”The theory of functions“, M.: Nauka.

16. Iviˆc, A. 1985, The Riemann zeta function, New Jork: J. Wiley & Sons.

17. Deza, E. & Varukhina, L. 2008, ”On mean values of some arithmetic functions in number fields“, Discrete Mathematics, Vol. 308, pp. 4892–4899.

18. Deza, E. & Varukhina, L. 2008, ”Representations of arithmetic sums over non-trivial zeros of the zeta function“, Asian-European Journal of Mathematics, Vol. 1, issue 4. pp. 509–519.


Review

For citations:


Gritsenko S.A., Deza E.I., Varukhina L.V. On behavior of arithmetical functions, related to Chebyshev function. Chebyshevskii Sbornik. 2019;20(3):154-164. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-154-164

Views: 515


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)