Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type
https://doi.org/10.22405/2226-8383-2019-20-3-143-153
Abstract
Keywords
About the Authors
Dmitry Viktorovich GorbachevRussian Federation
Doctor of physical and mathematical sciences, Professor, Department of Applied Mathematics and Computer Science
Ivan Anatol’evich Martyanov
Russian Federation
Graduate student, Department of applied mathematics and computer science
References
1. Arestov V., Babenko A., Deikalova M., Horv´ath ´A. Nikol’skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line // Anal. Math. 2018. Vol. 44, no. 1. P. 21–42. DOI: 10.1007/s10476-018-0103-6
2. Dai F., Gorbachev D., Tikhonov S. Nikolskii constants for polynomials on the unit sphere // J. d’Analyse Math. 2019 (to appear); arXiv:1708.09837. 2017. 21 p. https://arxiv.org/pdf/1708.09837.pdf
3. Dai F., Gorbachev D., Tikhonov S. Estimates of the asymptotic Nikolskii constants for spherical polynomials // arXiv:1907.03832. 2019. 27 p. https://arxiv.org/pdf/1907.03832.pdf
4. Ganzburg M. Sharp constants of approximation theory. I. Multivariate Bernstein–Nikolskii type inequalities // arXiv:1901.04400. 2019. 19 p. https://arxiv.org/pdf/1901.04400.pdf
5. Ganzburg M., Tikhonov S. On Sharp Constants in Bernstein–Nikolskii Inequalities // Constr. Approx. 2017. Vol. 45, no. 3. P. 449–466.
6. Gorbachev D. V., Ivanov V. I. Nikol’skii–Bernstein constants for entire functions of exponential spherical type in weighted spaces // Trudy Inst. Mat. i Mekh. UrO RAN. 2019. Vol. 25, no. 2. P. 75–87. DOI: 10.21538/0134-4889-2019-25-2-75-87
7. Gorbachev D. V., Dobrovolskii N. N. Nikolskii constants in $$L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$$ spaces // Chebyshevskii Sbornik. 2018. Vol. 19, no. 2. P. 67–79. (In Russ.) DOI: 10.22405/2226-8383-2018-19-2-67-79
8. Gorbachev D. V., Martyanov I. A. On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type. Chebyshevskii Sbornik // 2018. Vol. 19, no. 2. P. 80–89. (In Russ.) DOI: 10.22405/2226-8383-2018-19-2-80-89
9. Levin E., Lubinsky D. Lp Chritoffel functions, Lp universality, and Paley–Wiener spaces // J. D’Analyse Math. 2015. Vol. 125. P. 243–283.
10. Levin E., Lubinsky D. Asymptotic behavior of Nikolskii constants for polynomials on the unit circle // Comput. Methods Funct. Theory. 2015. Vol. 15, no. 3. P. 459–468.
11. Nikolskii S. M. Approximation of functions of several variables and imbedding theorems. Berlin; Heidelberg; New York: Springer, 1975.
Review
For citations:
Gorbachev D.V., Martyanov I.A. Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type. Chebyshevskii Sbornik. 2019;20(3):143-153. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-143-153