Preview

Chebyshevskii Sbornik

Advanced search

Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type

https://doi.org/10.22405/2226-8383-2019-20-3-143-153

Abstract

Let $$0<p\le \infty,$$ $$\mathcal{C}(n;p;r)=\sup_{T}\frac{\|T^{(r)}\|_{L^{\infty}[0,2\pi)}}{\|T\|_{L^{p}[0,2\pi)}}$$ and $$\mathcal{L}(p;r)=\sup_{F}\frac{\|F^{(r)}\|_{L^{\infty}(\mathbb{R})}}{\|F\|_{L^{p}(\mathbb{R})}}$$ be the sharp Nikolskii-Bernstein constants for r-th derivatives of trigonometric polynomials of degree n and entire functions of exponential type 1 respectively. Recently E.Levin and D.Lubinsky have proved that for the Nikolskii constants $$\mathcal{C}(n;p;0)=n^{1/p}\mathcal{L}(p;0)(1+o(1)),\quad n\to \infty.$$ M.Ganzburg and S.Tikhonov generalized this result to the case of Nikolskii-Bernstein constants: $$\mathcal{C}(n;p;r)=n^{r+1/p}\mathcal{L}(p;r)(1+o(1)),\quad n\to \infty.$$ They also showed the existence of the extremal polynomial $$\tilde{T}_{n,r}$$ and the function $$\tilde{F}_{r}$$ in this problem, respectively. Earlier, we gave more precise boundaries in the Levin-Lubinsky-type result, proving that for all p and n $$n^{1/p}\mathcal{L}(p;0)\le \mathcal{C}(n;p;0)\le (n+\lceil 1/p\rceil)^{1/p}\mathcal{L}(p;0).$$ Here we establish close facts for the case of Nikolskii-Bernstein constants, which also imply the asymptotic Ganzburg-Tikhonov equality. The results are stated in terms of extremal functions $$\tilde{T}_{n,r},$$ $$\tilde{F}_{r}$$ and the Taylor coefficients of a kernel of type Jackson-Fejer $$(\frac{\sin \pi x}{\pi x})^{2s}$$. We implicitly use Levitan-type polynomials arising from the Poisson summation formula. We formulate one hypothesis about the signs of the Taylor coefficients of the extremal functions.

About the Authors

Dmitry Viktorovich Gorbachev
Tula State University (Tula)
Russian Federation

Doctor of physical and mathematical sciences, Professor, Department of Applied Mathematics and Computer Science



Ivan Anatol’evich Martyanov
Tula State University (Tula)
Russian Federation

Graduate student, Department of applied mathematics and computer science



References

1. Arestov V., Babenko A., Deikalova M., Horv´ath ´A. Nikol’skii inequality between the uniform norm and integral norm with Bessel weight for entire functions of exponential type on the half-line // Anal. Math. 2018. Vol. 44, no. 1. P. 21–42. DOI: 10.1007/s10476-018-0103-6

2. Dai F., Gorbachev D., Tikhonov S. Nikolskii constants for polynomials on the unit sphere // J. d’Analyse Math. 2019 (to appear); arXiv:1708.09837. 2017. 21 p. https://arxiv.org/pdf/1708.09837.pdf

3. Dai F., Gorbachev D., Tikhonov S. Estimates of the asymptotic Nikolskii constants for spherical polynomials // arXiv:1907.03832. 2019. 27 p. https://arxiv.org/pdf/1907.03832.pdf

4. Ganzburg M. Sharp constants of approximation theory. I. Multivariate Bernstein–Nikolskii type inequalities // arXiv:1901.04400. 2019. 19 p. https://arxiv.org/pdf/1901.04400.pdf

5. Ganzburg M., Tikhonov S. On Sharp Constants in Bernstein–Nikolskii Inequalities // Constr. Approx. 2017. Vol. 45, no. 3. P. 449–466.

6. Gorbachev D. V., Ivanov V. I. Nikol’skii–Bernstein constants for entire functions of exponential spherical type in weighted spaces // Trudy Inst. Mat. i Mekh. UrO RAN. 2019. Vol. 25, no. 2. P. 75–87. DOI: 10.21538/0134-4889-2019-25-2-75-87

7. Gorbachev D. V., Dobrovolskii N. N. Nikolskii constants in $$L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$$ spaces // Chebyshevskii Sbornik. 2018. Vol. 19, no. 2. P. 67–79. (In Russ.) DOI: 10.22405/2226-8383-2018-19-2-67-79

8. Gorbachev D. V., Martyanov I. A. On interrelation of Nikolskii Constants for trigonometric polynomials and entire functions of exponential type. Chebyshevskii Sbornik // 2018. Vol. 19, no. 2. P. 80–89. (In Russ.) DOI: 10.22405/2226-8383-2018-19-2-80-89

9. Levin E., Lubinsky D. Lp Chritoffel functions, Lp universality, and Paley–Wiener spaces // J. D’Analyse Math. 2015. Vol. 125. P. 243–283.

10. Levin E., Lubinsky D. Asymptotic behavior of Nikolskii constants for polynomials on the unit circle // Comput. Methods Funct. Theory. 2015. Vol. 15, no. 3. P. 459–468.

11. Nikolskii S. M. Approximation of functions of several variables and imbedding theorems. Berlin; Heidelberg; New York: Springer, 1975.


Review

For citations:


Gorbachev D.V., Martyanov I.A. Interrelation between Nikolskii–Bernstein constants for trigonometric polynomials and entire functions of exponential type. Chebyshevskii Sbornik. 2019;20(3):143-153. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-3-143-153

Views: 519


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)