Dirichlet series algebra of a monoid of natural numbers
https://doi.org/10.22405/2226-8383-2019-20-1-179-194
Abstract
In this paper, for an arbitrary monoid of natural numbers, the foundations of the Dirichlet series algebra are constructed either over a numerical field or over a ring of integers of an algebraic numerical field.
For any numerical field $$\mathbb{K}$$, it is shown that the set $$\mathbb{D}^*(M)_{\mathbb{K}}$$ of all reversible Dirichlet series of $$\mathbb{D}(M)_{\mathbb{K}}$$ is an infinite Abelian group consisting of series whose first coefficient is nonzero.
We introduce the notion of an integer Dirichlet monoid of natural numbers that form an algebra over a ring of algebraic integers $$\mathbb{Z}_\mathbb{K}$$ of the algebraic field $$\mathbb{K}$$. It is shown that for a group $$\mathbb{U}_\mathbb{K}$$ of algebraic units of the ring of algebraic integers of $$\mathbb{Z}_\mathbb{K}$$ an algebraic field $$\mathbb{K}$$ the set of $$\mathbb{D}(M)_{\mathbb{U}_\mathbb{K}}$$ of entire Dirichlet series, $$a(1)\in\mathbb{U}_\mathbb{K}$$, is multiplicative group.
For any Dirichlet series from the Dirichlet series algebra of a monoid of natural numbers, the reduced series, the irreversible part and the additional series are determined. A formula for decomposition of an arbitrary Dirichlet series into the product of the reduced series and a construction of an irreversible part and an additional series is found.
For any monoid of natural numbers allocated to the algebra of Dirichlet series, convergent in the entire complex domain. The Dirichlet series algebra with a given half-plane of absolute convergence is also constructed. It is shown that for any nontrivial monoid M and for any real $$\sigma_0$$, there is an infinite set of Dirichlet series of $$\mathbb{D}(M)$$ such that the domain of their holomorphism is $$\alpha$$-half-plane $$\sigma>\sigma_0$$.
With the help of the universality theorem S. M. Voronin managed to prove the weak form of the universality theorem for a wide class of Zeta functions of monoids of natural numbers.
In conclusion describes the actual problem with the Zeta functions of monoids of natural numbers that require further research. In particular, if the Linnik-Ibrahimov hypothesis is true, then a strong theorem of universality should be valid for them.
Keywords
About the Authors
Nikolai Nikolaevich Dobrovol’skyRussian Federation
candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science, Tula State University; associate Professor of algebra, mathematical analysis and geometry, Tula State L. N. Tolstoy Pedagogical University, Tula.
Mikhail Nikolaevich Dobrovol’skii
Russian Federation
candidate of candidate of physical and mathematical sciences, senior researcher
Nikolai Mihailovich Dobrovol’skii
Russian Federation
doctor of physical and mathematical sciences, professor, head of the department of algebra, mathematical analysis and geometry
Irina Nikolaevna Balaba
Russian Federation
doctor of physical and mathematical sciences, assistant professor, professor of the department of algebra, mathematical analysis and geometry
Irina Yuryevna Rebrova
Russian Federation
candidate of physical and mathematical Sciences, associate professor, dean of the faculty of mathematics, physics and computer science
References
1. Voronin, S. M. 1975, “Theorem on the “universality” of the Riemann zeta-function“, Math. USSR Izv., vol. 9, pp. 443–453.
2. Voronin S. M., Karacuba A. A., 1994, Dzeta-funkcija Rimana, Izd-vo Fiz-matlit, Moskva, 376 p.
3. Gurvic A., Kurant R., 1968, Teorija funkcij, Izd-vo Nauka, Moskva, 618 p.
4. Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrov I. Yu., Balaba I. N., Dobrovol’skii N. N., Dobrovol’skii N. M., Dobrovol’skaya L. P., Rodionov A. V., Pikhtil’kova O. A., 2017, "Number-theoretic method in approximate analysis" Chebyshevskii Sbornik vol. 18, №4. pp. 6–85.
5. Dobrovol’skaja L. P., Dobrovol’skij M. N., Dobrovol’skij N. M., Dobrovol’skij N. N., 2012, "Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal’nyh kojefficientov" Chebyshevskii Sbornik vol 13, №4(44) pp. 4–107.
6. Dobrovol’skij M. N., 2007, "Funkcional’noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok" , Doklady akademii nauk, vol 412, №3, pp. 302–304.
7. Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol’skaya L. P., Bocharova O. E., 2016, "On hyperbolic Hurwitz zeta function" , Chebyshevskii Sbornik, vol 17, №3 pp. 72–105.
8. Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol’skii N. M., Dobrovolsky N. N., 2014, "On Hyperbolic Zeta Function of Lattices" , In: Continuous and Distributed Systems. Solid Mechanics and Its Applications, Vol. 211. pp. 23–62. DOI:10.1007/978-3-319-03146-0_2.
Review
For citations:
Dobrovol’sky N.N., Dobrovol’skii M.N., Dobrovol’skii N.M., Balaba I.N., Rebrova I.Yu. Dirichlet series algebra of a monoid of natural numbers. Chebyshevskii Sbornik. 2019;20(1):179-194. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-179-194