Preview

Chebyshevskii Sbornik

Advanced search

One model Zeta function of the monoid of natural numbers

https://doi.org/10.22405/2226-8383-2019-20-1-148-163

Abstract

The paper studies the Zeta function $$\zeta(M(p_1,p_2)|\alpha)$$ of the monoid $$M (p_1,p_2)$$ generated by Prime numbers $$p_1<p_2$$ of the form 3n+2. Next,the main monoid $$M_{3,1}(p_1,p_2)\subset M(p_1,p_2)$$ and the main set $$ A_{3,1}(p_1,p_2)= M(p_1,p_2)\setminus M_{3,1}(p_1, p_2)$$ are distinguished. For the corresponding Zeta functions, explicit finite formulas are found that give an analytic continuation on the entire complex plane except for the countable set of poles. Inverse series for these Zeta functions and functional equations are found.
The paper gives definitions of three new types of monoids of natural numbers with a unique decomposition into simple elements: monoids of degrees, Euler monoids modulo q and unit monoids modulo q. Provided the expression of the Zeta functions using the Euler product.
The paper discusses the effect Davenport-Heilbronn Zeta-functions of monoids of natural numbers that is associated with the appearance of zeros of the Zeta-functions of terms obtained by the classes of residues modulo.
For monoids with an exponential sequence of primes, the barrier series hypothesis is proved and it is shown that the holomorphic domain of the Zeta function of such a monoid is the complex half-plane to the right of the imaginary axis.
In conclusion, topical problems with zeta-functions of monoids of natural numbers that require further investigation are considered.

About the Author

Nikolai Nikolaevich Dobrovol’sky
Tula State University, Tula State L. N. Tolstoy Pedagogical University, Tula.
Russian Federation

candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science, Tula State University; associate professorof the department of algebra, mathematical analysis and geometry, Tula State L. N. Tolstoy Pedagogical University, Tula.



References

1. Bombieria E., Ghoshb A., 2011, “Around the Davenport–Heilbronn function”, Uspekhi Mat. Nauk, 66:2(398) pp. 15–66.

2. Voronin S. M., Karacuba A. A., 1994, Dzeta-funkcija Rimana, Izd-vo Fiz-matlit, Moskva, 376 p.

3. Gel’fond A. O., 1967, Calculus of finite differences, Izd-vo Nauka, Moskva, 376 p.

4. Gurvic A., Kurant R., 1968, Teorija funkcij, Izd-vo Nauka, Moskva, 618 p.

5. Dobrovol’skaja L. P., Dobrovol’skij M. N., Dobrovol’skij N. M., Dobrovol’skij N. N., 2012, "Giperbolicheskie dzeta-funkcii setok i reshjotok i vychislenie optimal’nyh kojefficientov" Chebyshevskii Sbornik vol 13, №4(44) pp. 4–107.

6. Dobrovol’skij M. N., 2007, "Funkcional’noe uravnenie dlja giperbolicheskoj dzeta-funkcii celochislennyh reshetok" , Doklady akademii nauk, vol 412, № 3, pp. 302–304.

7. Dobrovolsky N. M., Dobrovolsky N. N., Soboleva V. N., Sobolev D. K., Dobrovol’skaya L. P., Bocharova O. E., 2016, "On hyperbolic Hurwitz zeta function" , Chebyshevskii Sbornik, vol 17, №3, pp. 72–105.

8. Davenport H., 1971, Mul’tiplikativnaja teorija chisel, Izd-vo Nauka, Moskva, 200 p.

9. Prahar K., 1967, Raspredelenie prostyh chisel, per. s nem, Izd-vo Mir, Moskva, 511 p.

10. Privalov I. I., 1977, Vvedenie v teoriju funkcij kompleksnogo peremennogo, Izd-vo Nauka, Moskva, 444 p.

11. Stenli R., 1990, Perechislitel’naja kombinatorika, Izd-vo Mir, Moskva, 440 p.

12. Titchmarsh E. K., 1952, Teorija dzeta-funkcii Rimana Izd-vo I-L, Moskva, 407 p.

13. Chandrasekharan K., 1974, Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, Moskva, 188 p.

14. Chandrasekharan K., 1975, Arifmeticheskie funkcii, per. s angl, Izd-vo Nauka, Moskva, 272 p.

15. Davenport H., Heilbronn H., 1936, "On the zeros of certain Dirichlet series" , J. London Math. Soc. Vol. 11. pp. 181–185.

16. Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol’skii N. M., Dobrovolsky N. N., 2014, "On Hyperbolic Zeta Function of Lattices" , In: Continuous and Distributed Systems. Solid Mechanics and Its Applications, Vol. 211. pp. 23–62. DOI:10.1007/978-3-319-03146-0_2.


Review

For citations:


Dobrovol’sky N.N. One model Zeta function of the monoid of natural numbers. Chebyshevskii Sbornik. 2019;20(1):148-163. (In Russ.) https://doi.org/10.22405/2226-8383-2019-20-1-148-163

Views: 535


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)