Preview

Chebyshevskii Sbornik

Advanced search

Exact bounds for the special class of integer polynomials with given discriminant

https://doi.org/10.22405/2226-8383-2019-20-2-39-46

Abstract

An upper bound and lower bound for the number of integer polynomials which have only two
close to each other roots, and small discriminant in terms of the Euclidean metric is obtained.

About the Author

Natalya Budarina

Ireland


References

1. Beresnevich, V. V., Bernik, V. I. & Goetze, F. 2010, “Simultaneous approximations of zero by an integral polynomial, its derivative, and small values of discriminants”, Dokl. Nats. Nauk Belarusi, vol. 54, no. 2, pp. 26–28, 125.

2. Beresnevich, V. V., Bernik, V. I. & Goetze, F. 2016, “Integral polynomials with small discriminants and resultants”, Advances in Mathematics, vol. 298, pp. 393–412.

3. Bernik, V. I. 1983, “An application of Hausdorff dimension in the theory of Diophantine approximation”, Acta Arith., vol. 42, pp. 219–253.

4. Bernik, V. I. 1989, “The exact order of approximating zero by values of integral polynomials”, Acta Arith., vol. 53, pp. 17–28.

5. Bernik, V. I. & Dodson, M. M. 1999, “Metric Diophantine approximation on manifolds”, Cambridge: CUP, Vol. 137, 172 p.

6. Bernik, V. I., Goetze, F. &, Kukso, O. 2008, “Lower bounds for the number of integral polynomials with given order of discriminants”, Acta Arith., vol. 133, pp. 375–390.

7. Bernik, V. I., Goetze, F. &, Kukso, O. 2008, “On the divisibility of the discriminant of an integral polynomial by prime powers”, Lith. Math. J., vol. 48, pp. 380–396.

8. Budarina, N., Dickinson, D. & Bernik, V. 2010, “Simultaneous Diophantine approximation in the real, complex and p-adic fields”, Math. Proc. Cambridge Philos. Soc., vol. 149, pp. 193–216.

9. Budarina, N., Dickinson, D. & Jin, Yuan 2012, “On the number of polynomials with small discriminants in the euclidean and p-adic metrics”, Acta Mathematica Sinica, vol. 28, pp. 469–476.

10. Bernik, V., Budarina, N. & O’Donnell, H. 2018, “Discriminants of polynomials in the Archimedean and non-Archimedean metrics”, Acta Math. Hungar., vol. 154, no. 2, pp. 265–278.

11. Bugeaud, Y. 2004, “Approximation by algebraic numbers”, Cambridge Tracts in Mathematics, Vol. 160, Cambridge University Press.

12. Goetze, F,. Kaliada, D. & Kukso, O. 2014, “The asymptotic number of integral cubic polynomials with bounded heights and discriminants”, Lith. Math. J., vol. 54, pp. 150–165.

13. Goetze, F., Kaliada, D. & Korolev, M. “On the number of quadratic polynomials with bounded discriminants”, Retrieved from: arXiv:1308.2091v1.

14. Sprindzuk,V. G. 1969, “Mahler’s problem in metric number theory”, Translated from the Russian by B. Volkmann. Translations of Mathematical Monographs, Vol. 25, American Mathematical Society (Providence, R.I.).

15. Van Der Waerden, B.L. 1971, “Algebra”. Springer-Verlag (Berlin, Heidelberg).


Review

For citations:


Budarina N. Exact bounds for the special class of integer polynomials with given discriminant. Chebyshevskii Sbornik. 2019;20(2):39-46. https://doi.org/10.22405/2226-8383-2019-20-2-39-46

Views: 425


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)