Preview

Chebyshevskii Sbornik

Advanced search

Another application of Linnik dispersion method

https://doi.org/10.22405/2226-8383-2018-19-3-148-163

Abstract

Let $\alpha_m$ and $\beta_n$ be two sequences of real numbers supported on $[M, 2M]$ and $[N, 2N]$ with $M = X^{1/2 - \delta}$ and $N = X^{1/2 + \delta}$. We show that there exists a $\delta_0 > 0$ such that the multiplicative convolution of $\alpha_m$ and $\beta_n$ has exponent of distribution $\frac{1}{2} + \delta-\varepsilon$ (in a weak sense) as long as $0 \leq \delta < \delta_0$,    the sequence  $\beta_n$ is Siegel-Walfisz and both sequences $\alpha_m$ and $\beta_n$ are bounded above by divisor functions. Our result is thus a general dispersion estimate for ``narrow'' type-II sums. The proof relies crucially on Linnik's dispersion method and recent bounds for trilinear forms in Kloosterman fractions due to Bettin-Chandee. We highlight an application related to the Titchmarsh divisor problem.

About the Authors

´Etienne Fouvry
Laboratoire de Math´ematiques d’Orsay, Univ. Paris–Sud, CNRS, Universit´e Paris–Saclay, 91405 Orsay, France
France


Maksym Radziwi l l
Department of Mathematics, McGill University, Burnside Hall, Room 1005, 805 Sherbrooke Street West, Montreal, Quebec, Canada, H3A 0B9
Canada


Review

For citations:


Fouvry ´., Radziwi l l M. Another application of Linnik dispersion method. Chebyshevskii Sbornik. 2018;19(3):148-163. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-3-148-163

Views: 524


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)