Preview

Chebyshevskii Sbornik

Advanced search

Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces

https://doi.org/10.22405/2226-8383-2018-19-2-67-79

Abstract

Recently Arestov, Babenko, Deikalova, and Horv\'ath have established a series
of interesting results correspondent to the sharp Nikolskii constant
$\mathcal{L}_\textup{even}(\alpha,p)$ in the weighted inequality
\[
\sup_{x\in [0,\infty)}|f(x)|\le
\mathcal{L}_\textup{even}(\alpha,p)\sigma^{(2\alpha+2)/p}
\biggl(2\int_{0}^{\infty}|f(x)|^{p}x^{2\alpha+1}\,dx\biggr)^{1/p}
\]
for the subspace $\mathcal{E}^{\sigma}\cap
L^{p}(\mathbb{R}_{+},x^{2\alpha+1}\,dx)$ of even entire functions $f$ of
exponential type at most $\sigma>0$, where $1\le p<\infty$ and $\alpha\ge -1/2$.

We prove that, for the same $\alpha$ and $p$
\[
\mathcal{L}_\textup{even}(\alpha,p)=\mathcal{L}(\alpha,p),
\]
where $\mathcal{L}(\alpha,p)$ is the sharp constant in the Nikolskii inequality
\[
\sup_{x\in \mathbb{R}}|f(x)|\le \mathcal{L}(\alpha,p)\sigma^{(2\alpha+2)/p}
\biggl(\int_{\mathbb{R}}|f(x)|^{p}|x|^{2\alpha+1}\,dx\biggr)^{1/p}
\]
for any (not necessary even) functions $f\in
\mathcal{E}_{p,\alpha}^{\sigma}:=\mathcal{E}^{\sigma}\cap
L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$.

Also we give bounds of the normalized Nikolskii constant
\[
\mathcal{L}^{*}(\alpha,p):=
(2^{2\alpha+2}\Gamma(\alpha+1)\Gamma(\alpha+2))^{1/p}\mathcal{L}(\alpha,p),
\]
which are as follows:
\[
\mathcal{L}^{*}(\alpha,p)\le \lceil p/2\rceil^{\frac{2\alpha+2}{p}},\quad p\in
(0,\infty),
\]
and for fixed $p\in [1,\infty)$
\[
\mathcal{L}^{*}(\alpha,p)\ge (p/2)^{\frac{2\alpha+2}{p}\,(1+o(1))},\quad
\alpha\to \infty.
\]
The upper estimate is sharp if and only if $p=2$. In this case,
$\mathcal{L}^{*}(\alpha,2)=1$ for each $\alpha\ge -1/2$.

Our approach relies on the one-dimensional Dunkl harmonic analysis. To prove
the identity $\mathcal{L}_\textup{even}(\alpha,p)=\mathcal{L}(\alpha,p)$ we use
the even positive Dunkl-type generalized translation operator $T^{t}$ such that
is bounded on $L^{p}(\mathbb{R},|t|^{2\alpha+1}\,dt)$ with constant one and
invariant on the subspace $\mathcal{E}_{p,\alpha}^{\sigma}$.

The proof of the upper estimate of the constant $\mathcal{L}^{*}(\alpha,p)$ is
based on estimation of norms of the reproducing kernel for the subspace
$\mathcal{E}_{p,\alpha}^{1}$ and the multiplicative inequality for the
Nikolskii constant. To obtain the lower estimate we consider the normalized
Bessel function $j_{\nu}\in \mathcal{E}_{p,\alpha}^{1}$ of order $\nu\sim
(2\alpha+2)/p$.

About the Authors

Dmitry Viktorovich Gorbachev
Tula State University
Russian Federation
professor of the department of applied mathematics and computer science, doctor of physical and mathematical sciences


Nikolaevich Nikolai Dobrovolskii
Tula State University
Russian Federation
candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science


References

1. Achieser, N.\,N. 2004, ``Theory of Approximation'', New York: Dover.

2. Andersen, N.\,B. \& de Jeu, M. 2005, ``Elementary proofs of Paley--Wienertheorems for the Dunkl transform on the real line'', \textit{Int. Math. Res.Notices}, vol. 2005, no. 30, pp. 1817--1831.

3. Arestov, V.\,V. 1980, ``Inequality of different metrics for trigonometricpolynomials'', \textit{Math. Notes}, vol. 27, no. 4, pp. 265--269.https://doi.org/10.1007/BF01140526\bibitem{e-ABDH18}Arestov, V., Babenko, A., Deikalova, M. \& Horv\'ath, \'A. 2018, ``Nikol'skiiinequality between the uniform norm and integral norm with Bessel weight forentire functions of exponential type on the half-Line'', \textit{Anal. Math.},vol. 44, no. 1, pp. 21--42. https://doi.org/10.1007/s10476-018-0103-6

4. Bateman, G., Erd\'elyi, A., et al. 1953, ``Higher Transcendental Functions'',vol. II. McGraw Hill Book Company, New York.\bibitem{e-DGT18}Dai, F., Gorbachev, D. \& Tikhonov, S. 2018, ``Nikolskii constants forpolynomials on the unit sphere'', \textit{J. d'Analyse Math.} (in press);arXiv:1708.09837.

5. Gorbachev, D.\,V. 2000, ``Extremum problems for entire functions of exponentialspherical type'', \textit{Math. Notes}, vol. 68, no. 2, pp. 159--166.

6. Gorbachev, D.\,V. 2005, ``An integral problem of Konyagin and the$(C,L)$-constants of Nikol'skii'', \textit{Proc. Steklov Inst. Math. Suppl.},vol. 2, pp. S117--S138.\bibitem{e-GIT18}Gorbachev, D.\,V., Ivanov, V.\,I. \& Tikhonov, S.\,Y. 2018, ``Positive$L^{p}$-bounded Dunkl-type generalized translation operator and itsapplications'', \textit{Constr. Approx.}, pp. 1--51.https://doi.org/10.1007/s00365-018-9435-5

7. Ibragimov, I.\,I. \& Dzhafarov, A.\,S. 1961, ``Some inequalities for an entirefunction of finite degree and its derivatives'', \textit{Dokl. Akad. NaukSSSR}, vol. 138, no. 4, pp. 755--758.\bibitem{e-LSI11}Li, I.\,P., Su, C.\,M. \& Ivanov V.\,I. 2011, ``Some problems of approximationtheory in the spaces $L_{p}$ on the line with power weight'', \textit{Math.Notes}, vol. 90, no. 3, pp. 344--364. https://doi.org/10.1134/S0001434611090045

8. Nessel, R. \& Wilmes, G. 1978, ``Nikolskii-type inequalities for trigonometricpolynomials and entire functions of exponential type'', \textit{J. Austral.Math. Soc.}, vol. 25, no. 1, pp. 7--18.

9. Nikolskii, S.\,M. 1975, ``Approximation of functions of several variables andimbedding theorems'', Berlin; Heidelberg; New York: Springer.

10. Platonov, S.\,S. 2007, ``Bessel harmonic analysis and approximation offunctions on the half-line'', \textit{Izvestiya: Math.}, vol. 71, no. 5,pp. 1001--1048.

11. R\"osler, M. 2003, ``Dunkl Operators: Theory and Applications'',\textit{Lecture Notes in Math.}, Berlin: Springer, vol. 1817, pp. 93--135.

12. Stempak, K. 2000, ``A weighted uniform $L^p$-estimate of Bessel functions: anote on a paper of K. Guo: `A uniform $L^p$ estimate of Bessel functions anddistributions supported on $S^{n-1}$'\,'', \textit{Proc. Amer. Math. Soc.},vol. 128, no. 10, pp. 2943--2945.


Review

For citations:


Gorbachev D.V., Dobrovolskii N.N. Nikolskii constants in $L^{p}(\mathbb{R},|x|^{2\alpha+1}\,dx)$ spaces. Chebyshevskii Sbornik. 2018;19(2):67-79. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-2-67-79

Views: 989


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)