Mean-value theorem for non-complete rational trigonometric sums
https://doi.org/10.22405/2226-8383-2018-19-4-252-258
Abstract
For 2k > 0.5n(n+1)+1 0 ≤ l ≤ 0,5k−w−1,w = [lnn/lnp,] the asymptotic formulas was proved for the number of solutions of the system of congruences
{x1 +···+ xk ≡ y1 +···+ yk (mod pm)
xn/1 +···+ xn/k ≡ yn/1 +···+ yn/k (mod pm)},
where unknowns x1,...,xk,y1,...,yk run values up 1 to pm−l from the complete system residues by modulo pm. The finding formula for 2k ≤ 0.5n(n + 1) + 1 has no the place.
Let be 1 ≤ s < r < ··· < n,s + r +···+ n < 0.5n(n + 1),0 ≤ l ≤ 0,5k −w−1. Then as2 k > s + r +···+ n for the number of the system of congruencies
{xs/1 +•••+ xs/k ≡ ys/1 +•••+ ys/k (mod pm)
xr/1 +•••+ xr/k ≡ yr/1 +•••+ yr/k (mod pm)
xn/1 +•••+ xn/k ≡ yn/1 +•••+ yn/k (mod pm)},
, where unknowns x1,...,xk,y1,...,yk run values up 1 to pm−l from the complete system residues by modulo pm, was found the asymptotic formula. This formula has no place as 2k ≤ s + r +···+ n.
About the Authors
V. N. ChubarikovRussian Federation
Chubarikov Vladimir Nikolaevich — doctor of physical and mathematical sciences, professor, head of the department of mathematical and computer methods of analysis, dean of the mechanics and mathematics faculty
H. M. Saliba
United States
Saliba Holem Mansour — Ph.D. Assistant Professors of faculty of natural & applied sciences
References
1. Vinogradov I. M., 1980, Metod trigonometricheskih summ v teorii chisel. M.: Nauka.
2. HuaL.-K. 1983, Selected Papers. New York Inc.: Springer Verlag, p. 888.
3. Arhipov G. I. 2013, Izbrannye trudy. Orel: Izd-vo Orlovskogo gos.un-ta, p. 464.
4. Arhipov G. I., Karacuba A. A., Chubarikov V. N. 1987, Teoriya kratnyh trigonometricheskih summ. M.: Nauka.
5. Arkhipov G.I., Chubarikov V.N., Karatsuba A.A. 2004, Trigonometric Sums in Number Theory and Analysis. Berlin–New York: Walter de Gruyter (de Gruyter Expositions in Mathematics 39).
6. ChubarikovV.N. 1981, "Ob asimptoticheskih formulah dlya intngrala I. M. Vinogradova i ego obobshchenij", Tr.MIAN., vol. 157, pp. 214–232.
7. ChubarikovV.N. 2018, "Kratnye polnye racional’nye arifmeticheskie summy ot znachenij mnogochlena", Dokl.RAN., 2018, vol. 478, № 1, pp. 22–24.
8. ArhipovaL.G., ChubarikovV.N., 2018, "Pokazatel’ skhodimosti osobogo ryada odnoj mnogomernoj problemy", Vestn. Mosk. un-ta. Ser.I, Matematika, mekhanika. № 5. pp. 59-62.
9. SalibaH.M. 2018, "On non-complete rational trigonometric sums", Chebyshevskii sbornik. vol. 19. № 3.
10. ChubarikovV.N., 2019, "Ob odnoj teoreme o srednem", Vestn. Mosk. un-ta. Ser.I, Matematika, mekhanika. 2019. № 1. pp. 59-62.
Review
For citations:
Chubarikov V.N., Saliba H.M. Mean-value theorem for non-complete rational trigonometric sums. Chebyshevskii Sbornik. 2018;19(4):252-258. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-4-252-258