Preview

Chebyshevskii Sbornik

Advanced search

Mean-value theorem for non-complete rational trigonometric sums

https://doi.org/10.22405/2226-8383-2018-19-4-252-258

Abstract

For 2k > 0.5n(n+1)+1 0 ≤ l ≤ 0,5k−w−1,w = [lnn/lnp,] the asymptotic formulas was proved for the number of solutions of the system of congruences

{x1 +···+ xk ≡ y1 +···+ yk (mod pm)

xn/1 +···+ xn/k ≡ yn/1 +···+ yn/k (mod pm)},

where unknowns x1,...,xk,y1,...,yk run values up 1 to pm−l from the complete system residues by modulo pm. The finding formula for 2k ≤ 0.5n(n + 1) + 1 has no the place.

Let be 1 ≤ s < r < ··· < n,s + r +···+ n < 0.5n(n + 1),0 ≤ l ≤ 0,5k −w−1. Then as2 k > s + r +···+ n for the number of the system of congruencies

{xs/1 +•••+ xs/k ≡ ys/1 +•••+ ys/k (mod pm)

xr/1 +•••+ xr/k ≡ yr/1 +•••+ yr/k (mod pm)

xn/1 +•••+ xn/k ≡ yn/1 +•••+ yn/k (mod pm)},

, where unknowns x1,...,xk,y1,...,yk run values up 1 to pm−l from the complete system residues by modulo pm, was found the asymptotic formula. This formula has no place as 2k ≤ s + r +···+ n.

About the Authors

V. N. Chubarikov
M.V. Lomonosov Moscow State University
Russian Federation

Chubarikov Vladimir Nikolaevich — doctor of physical and mathematical sciences, professor, head of the department of mathematical and computer methods of analysis, dean of the mechanics and mathematics faculty



H. M. Saliba
Notre Dame University Louaize
United States

Saliba Holem Mansour — Ph.D. Assistant Professors of faculty of natural & applied sciences



References

1. Vinogradov I. M., 1980, Metod trigonometricheskih summ v teorii chisel. M.: Nauka.

2. HuaL.-K. 1983, Selected Papers. New York Inc.: Springer Verlag, p. 888.

3. Arhipov G. I. 2013, Izbrannye trudy. Orel: Izd-vo Orlovskogo gos.un-ta, p. 464.

4. Arhipov G. I., Karacuba A. A., Chubarikov V. N. 1987, Teoriya kratnyh trigonometricheskih summ. M.: Nauka.

5. Arkhipov G.I., Chubarikov V.N., Karatsuba A.A. 2004, Trigonometric Sums in Number Theory and Analysis. Berlin–New York: Walter de Gruyter (de Gruyter Expositions in Mathematics 39).

6. ChubarikovV.N. 1981, "Ob asimptoticheskih formulah dlya intngrala I. M. Vinogradova i ego obobshchenij", Tr.MIAN., vol. 157, pp. 214–232.

7. ChubarikovV.N. 2018, "Kratnye polnye racional’nye arifmeticheskie summy ot znachenij mnogochlena", Dokl.RAN., 2018, vol. 478, № 1, pp. 22–24.

8. ArhipovaL.G., ChubarikovV.N., 2018, "Pokazatel’ skhodimosti osobogo ryada odnoj mnogomernoj problemy", Vestn. Mosk. un-ta. Ser.I, Matematika, mekhanika. № 5. pp. 59-62.

9. SalibaH.M. 2018, "On non-complete rational trigonometric sums", Chebyshevskii sbornik. vol. 19. № 3.

10. ChubarikovV.N., 2019, "Ob odnoj teoreme o srednem", Vestn. Mosk. un-ta. Ser.I, Matematika, mekhanika. 2019. № 1. pp. 59-62.


Review

For citations:


Chubarikov V.N., Saliba H.M. Mean-value theorem for non-complete rational trigonometric sums. Chebyshevskii Sbornik. 2018;19(4):252-258. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-4-252-258

Views: 890


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)