Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface
https://doi.org/10.22405/2226-8383-2018-19-1-220-237
Abstract
The solution of the diffraction problem for a plane sound wave on an elastic ellipsoid E with an outer inhomogeneous layer is presented. The ellipsoid is in a half-space filled with an ideal fluid. The boundary of a half-space Π is an acoustically rigid or acoustically soft surface.
To obtain a solution, the area occupied by the liquid is expanded to full space. An additional scattering obstacle is introduced. This obstacle is a copy of E, located mirror-wise with respect to the plane Π. A second incident plane wave is also added. This wave ensures the fulfillment of that condition at the points of the plane Π, which corresponds to the type of the half-space boundary in the initial formulation of the problem. Thus, the problem is transformed into the problem of scattering of two plane sound waves on two ellipsoids in unbounded space.
The solution is based on the linear theory of elasticity and the model of propagation of small vibrations in an ideal fluid. In the outer part of the environment, the solution is sought analytically in the form of an expansion in spherical harmonics and Bessel functions. In the spherical region, which includes two ellipsoids and an adjacent layer of liquid, the finite element method (FEM) is used. The results of the calculation of the directivity patterns of the scattered sound field in the far zone are presented.
These dependences show the influence of the geometric and material parameters of the ellipsoid on the diffraction of sound.
About the Author
S. A. Skobel’tsynRussian Federation
Skobel’tsyn Sergey Alekseevich — candidate of physical and mathematical sciences, department of applied mathematics and computer science
References
1. Fedoruk, M.V. 1988, "Diffraction of sound waves by a a triaxial ellipsoidAcoustical Physics, vol. 34, no 1, pp. 160-164.
2. Bateman, H. & Erdelyi, A. 1955, "Higher transcendental functions" vol. 3, McGraw-Hill., New York, 292 p.
3. Silbiger, A. 1963, "Scattering of sound by an elastic prolate spheroidJ. Acoust. Soc. Amer., vol. 35, no 4, pp. 564-570.
4. Flax, L., Dragonette, L., Varadan, V.K. & Varadan V.V. 1982, "Analisis and computation of the acoustic scattering by an elastic prolate spheroid obtained from the T-matrix formulationJ. Acoust. Soc. Amer., vol. 71, no 5, pp. 1077-1082.
5. Kleshchev, A.A. 1986. "Three-dimensional and two-dimensional (axisymmetric) characteristics of elastic spheroid scatterersAkust. Zhurnal, vol. 32, no 2, pp. 268-271.
6. Hackman, R.H., Sammelmann, G.S., Williams, K.L. & Trivett D.H. 1988, "A reamalysis of the acoustic scattering from elastic spheroidsJ. Acoust. Soc. Amer., vol. 83, no 4, pp. 1255-1266.
7. Rozhdestvenskij, K.N. & Tolokonnikov, L.A. 1990, "On the scattering of sound waves by an elastic spheroidAkust. Zhurnal, vol. 36, no 5, pp. 927-930.
8. Tolokonnikov, L.A. 1997, "Diffraction of sound waves by an elastic spheroid with a small eccentricity in a viscous mediumIzv. Tul. Gos. Univ., Ser. Maths. Mech. Computer science, vol. 3, no 1, pp. 152-157.
9. Tolokonnikov, L.A. & Lobanov, A.V. 2011, "Diffraction of a plane sound wave on an inhomogeneous elastic spheroidIzv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 2, pp. 176-191.
10. Cooper, G. & Temple, J.A.G. 1983, "Calculations of acoustic scattering from ellipsoidal voids: bends, krill and fishUltrasonics, vol. 21, no 4, pp. 171-176.
11. Waterman, P.C. 1965, "Matrix formulation of electromagnetic scatteringProc. of the IEEE, vol. 53, pp. 805-812.
12. Waterman, P.C. 2009, "T-matrix methods in acoustic scatteringJ. Acoust. Soc. Amer., vol. 125, no 1, pp. 42-51.
13. Tsao, S.J., Varadan, V.V. & Varadan, V.K. 1983, "T-Matrix Approach to Scattering of Elastic (SH-) Waves by an Inclined Surface VoidASME. J. Appl. Mech., vol. 50, no 1, pp. 143-148.
14. Lavia, E., Gonzalez, J.D. & Blanc S. 2016, "A Computational Method to Calculate the Exact Solution for Acoustic Scattering by Liquid SpheroidsarXiv:1603.00499v2 [physics.comp-ph], vol. 3, pp. 1-14.
15. Athanasiadis, C. 1994, "The hard-core multi-layered ellipsoid in a low-frequency acoustic fieldInt. J. Eng., vol. 32, pp. 1352-1359.
16. Athanasiadis, C. 1994, "The multi-layered ellipsoid with a soft core in the presence of a lowfrequency acoustic wave"Q. J. Mech. Appl. Math., vol. 47, pp. 441-159.
17. Charalambopoulos, A. & Dassios G. 1999, "Scattering of a spherical wave by a small ellipsoidIMA J. Appl. Math., vol. 62, pp. 117-136.
18. Ershov, N.E., Illarionova, L.V. & Smagin S.I. 2010, "Numerical solution of three-dimensional stationary problem of acoustic waves diffractionVy‘chislitel‘ny‘e tekhnologii, vol. 15, no 1, pp. 60-76.
19. Veksler, N.D., Dubus, B. & Lavie, A. 1999, "Acoustic wave scattering by an ellipsoidal shellAcoust. Phys., vol. 45, pp. 46-51.
20. Harari, I. & Hughes, T.J.R. 1991, "Finite element method for the Helmholtz equation in an exterior domain: model problemsComp. Methods Appl. Mech. Eng. vol. 87, pp. 59-96.
21. Gan, H., Levin, P.L. & Ludwig, R. 1993, "Finite element formulation of acoustic scattering phenomena with absorbing boundary condition in the frequency domain"J. Acoust. Soc. Am., vol. 94, no 3, pt. 1, pp. 1651-1662.
22. Ihlenburg, F. 2013, "Finite element analysis of acoustic scattering", Springer Publishing Company Inc., New York, 226 p.
23. Skobel’tsyn, S.A. 2004, "Approach to solving problems on the scattering of elastic waves using FEMTez. doc. Intern. scientific. Conf. “Modern problems of mathematics, mechanics, computer science” Tula: Tul. Gos. Univ., pp. 135-136.
24. Ivanov, V.I. & Skobel’tsyn, S.A. 2008, "Modeling solutions to acoustics using FEM"Izv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 2, pp. 132-145.
25. Ivanov, E.A. 1968, "Diffraction of electromagnetic waves by two bodies", Nauka i tekhnika, Minsk, 584 p.
26. Kleshchev, А.А. 1977, "Scattering of sound by spheroidal bodies located at the interface between media"Akust. Zhurnal, vol. 23, no. 3, pp. 404-410.
27. Gaunaurd, J.C. & Huang, H. 1994, "Acoustic scattering by a spherical body near a plane boundaryJ. Acoust. Soc. Amer., vol. 96, no 6, pp. 2526-2536.
28. Tolokonnikov, L.A. & Logvinova, A.L. 2015, "Diffraction of a plane sound wave on two nonuniform cylinders with rigid insertsIzv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 1, pp. 54-66.
29. Skobel’tsyn, S.A. & Tolokonnikov, L.A. 2015, "Diffraction of a plane sound wave on an elastic spheroid with an inhomogeneous coating in the presence of an underlying surfaceIzv. Tul. Gos. Univ., Ser. Estestv. Nauki, no 2, pp. 64-75.
30. Isakovich, M.A. 1973, "General acoustics", Nauka, Мoscow, 496 p.
31. Nowacki, W. 1975, "Teoria sprezystosci", Mir, Мoscow, 872 p.
32. Skudryzk, E.F. 1971, "The Foundations Acoustic", Springer-Verlag, New York, 542 p.
Review
For citations:
Skobel’tsyn S.A. Scattering of sound waves by an elastic ellipsoid with an inhomogeneous coating in the half-space with ideal surface. Chebyshevskii Sbornik. 2018;19(1):220-237. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-1-220-237