Preview

Chebyshevskii Sbornik

Advanced search

Joint discrete universality for Lerch zeta-functions

https://doi.org/10.22405/2226-8383-2018-19-1-138-151

Abstract

After Voronin’s work of 1975, it is known that some of zeta and L-functions are universal in the sense that their shifts approximate a wide class of analytic functions. Two cases of shifts, continuous and discrete, are considered.

The present paper is devoted to the universality of Lerch zeta-functions L(λ,α,s), s = σ+it, which are defined, for σ > 1, by the Dirichlet series with terms e2πiλm(m+α)−s with parameters λ R and α, 0 < α 1, and by analytic continuation elsewhere. We obtain joint discrete universality theorems for Lerch zeta-functions. More precisely, a collection of analytic functions f1(s),...,fr(s) simultaneously is approximated by shifts L(λ1,α1,s+ikh),...,L(λr,αr,s+ikh), k = 0,1,2,..., where h > 0 is a fixed number. For this, the linear independence over the field of rational numbers for the set {(log(m + αj) : m N0, j = 1,...,r), }is required. For the proof, probabilistic limit theorems on the weak convergence of probability measures in the space of analytic function are applied.

About the Authors

A. Laurinčikas
Vilnius university
Lithuania

Antanas Laurinčikas — doctor of physics-mathematical sciences, professor, Member of the Academy of Sciences of Lithuania, Head of the chair of probability theory and number theory



A. Mincevič
Vilnius university
Lithuania

Asta Mincevič — doctoral student in the department of probability theory and number theory



References

1. Billingsley, P. 1968, Convergence of Probability Measures, Wiley, New York.

2. Conway, J.B. 1978, Functions of one complex variable., Springer, Berlin, Heidelberg, New York.

3. Ignatavičiūte˙, J. 2002, “Discrete universality of the Lerch zeta-function”, Abstracts 8th Vilnius Conference on Prob. Theory, pp. 116–117.

4. Karatsuba, A. A., Voronin, S. M. 1992, The Riemann zeta-function, Walter de Gruyter, Berlin.

5. Laurinčikas, A. 1997, “The universality of the Lerch zeta-function”, Liet. Matem. Rink., vol. 37, pp. 367–375 (in Russian) ≡ Lith. Math. J., vol. 37, pp. 275–280.

6. Laurinčikas, A. 2008, “On the joint universality of Hurwitz zeta-functions”, Šiauliai Math. Semin., vol. 3(11), pp. 169–187.

7. Laurinčikas, A., Garunkštis, R. 2002, The Lerch Zeta-Function, Kluwer Academic Publishers, Dordrecht, Boston, London.

8. Laurinčikas, A., Macaitiene˙, R. 2009, “The discrete universality of the periodic Hurwitz zetafunction”, Integral Transforms. Spec. Funct., vol. 20, pp. 673–686.

9. Laurinčikas, A., Macaitiene˙, R., Mochov, D., Šiaučiūnas, D. 2017, “Universality of the periodic Hurwitz zeta-function with rational parameter”, (submitted).

10. Laurinčikas, A., Matsumoto, K. 2000, “The joint universality and functional independence for Lerch zeta-functions”, Nagoya Math. J., vol. 157. pp. 211–227.

11. Laurinčikas, A., Matsumoto, K. 2006, “Joint value-distribution theorems on Lerch zetafunctions. II”, Lith. Math. J., vol 46, pp. 332–350.

12. Laurinčikas, A., Mincevič, A. 2017, “Discrete universality theorems for the Lerch zeta-function”, Anal. Probab. Methods Number Theory, A. Dubickas et al. (Eds). pp. 87–95.

13. Lerch, M. 1887, “Note sur la fonction K(w,x,s) =∑n≥0 exp{2πinx}(n + w)−s”, Acta Math., vol. 11, pp. 19–24.

14. Lipschitz, R. 1889, “Untersuchung einer aus vier Elementen gebildeten Reihe”, J. Reine Angew. Math., vol. 105, pp. 127–156.

15. Mergelyan, S.N. 1952, “Uniform approximations to functions of a complex variable”, Usp. Matem. Nauk, vol.7 no 2, pp. 31–122(in Russian)≡ Amer. Math. Trans., 1954, vol. 101.

16. Mincevič, A., Šiaučiūnas, D. 2017, “Joint universality theorems for Lerch zeta-functions”, Šiauliai Math. Semin., vol. 12(20), pp. 31–47.

17. Mincevič, A., Vaiginyte˙, A. 2016, “Remarks on the Lerch zeta-function”, Šiauliai Math. Semin., vol. 11(19), pp. 65–73.

18. Voronin, S.M. 1975, “Theorem on the “universality” of the Riemann zeta-function”, Izv. Akad. Nauk SSSR., vol. 39. pp. 475–486 (in Russian) ≡ Math. USSR Izv., vol. 9, pp.443–453.


Review

For citations:


Laurinčikas A., Mincevič A. Joint discrete universality for Lerch zeta-functions. Chebyshevskii Sbornik. 2018;19(1):138-151. (In Russ.) https://doi.org/10.22405/2226-8383-2018-19-1-138-151

Views: 652


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)