SHORT WEYL SUMS AND THEIR APPLICATIONS
https://doi.org/10.22405/2226-8383-2015-16-1-232-247
About the Authors
Z. Kh. RakhmonovTajikistan
N. N. Nazrubloev
Tajikistan
A. О. Rakhimov
Tajikistan
References
1. Vaughan, R. C. 1981, "Some remarks in Weyl sums" , Colloquia Mathematica Societatis Janos Bolyai 34. Topics in classical number theory, Budapest, 1981, North Holland (1984), pp. 1585 – 1602.
2. Hua Loo-Keng 1964. "Method of Trigonometric Sums and Its Applications in Number Theory" , Nauka, Moscow, 190 p. (Russian translation); 1959. "Die Abschдtzung von Exponentialsummen und Ihre Anwendungen in der Zahlentheorie" , Teubner, Leipzig.
3. Vaughan, R. C. 1986, "On Waring’s problem for cubes" , J. f¨ur die reine und angewandte Math., vol. 365, pp. 122 – 170.
4. Rakhmonov, Z. Kh. & Shokamolova, J. A. 2009, "Short quadratic Weil’s exponential sums" , Izvestiya Akademii nauk Respubliki Tajikistan. Otdelenie fiziko-matematicheskikh, himicheskikh, geologicheskikh i tekhnicheskikh nauk, no. 2(135), pp. 7 – 18.
5. Rakhmonov, Z. Kh. & Mirzoabdugafurov, K. I. 2008, "About the estimations of short cube Weyl sums" , Doklady Akademii nauk Respubliki Tajikistan, vol. 51, no. 1, pp. 5 – 15.
6. Rakhmonov, Z. Kh., Azamov, A. Z. & Mirzoabdugafurov, K. I. 2010, "An estimate short exponential Weyl’s sums fourth degree" , Doklady Akademii nauk Respubliki Tajikistan, vol. 53, no. 10, pp. 737 – 744.
7. Rakhmonov, Z. Kh. 2014, "The Estermann cubic problem with almost equal summand" , Mathematical Notes, vol. 95, Issue 3 – 4, pp. 407 – 417. doi.org /10.1134/S0001434614030122.
8. Rakhmonov, Z. Kh. & Mirzoabdugafurov, K. I. 2008, "Waring’s problem for cubes with almost equal summands" , Doklady Akademii nauk Respubliki Tajikistan, vol. 51, no. 2, pp. 83 – 86.
9. Rakhmonov, Z. Kh. & Azamov, A. Z. 2011, "An asymptotic formula in Waring’s problem for fourth powers with almost equal summands" , Doklady Akademii nauk Respubliki Tajikistan, vol. 54, no. 3, pp. 34 – 42.
10. Rakhmonov, Z. Kh. & Ozodbekova, N. B. 2011, "An estimate short exponential Weyl’s sums" , Doklady Akademii nauk Respubliki Tajikistan, vol. 54, no. 4, pp. 257 – 264.
11. Rakhmonov, Z. Kh. 2013, "Short Weyl exponential sums" , Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Seriya estestvennie, tekhicheskie, meditsinskie nauki. no. 6, part 2, pp. 194 – 203.
12. Arkhipov, G. I., Chubarikov, V. N. & Karatsuba, A. A. 2004, "Trigonometric sums in number theory and analysis" , Berlin–New-York: Walter de Gruyter, 554 p.
13. Nazrubloev, N. N. 2014, "Mean value of the short Weyl fifth degree exponential sums" , Doklady Akademii nauk Respubliki Tajikistan, vol. 57, no. 7, pp. 531 – 537.
14. Nazrubloev, N. N. 2014, "Estimate of short Weyl sums of fifth degree on minor arcs" , Doklady Akademii nauk Respubliki Tajikistan, vol. 57, no. 9, pp. 710 – 716.
15. Karatsuba, A. A. & Korolev, M. A. 2007, "A theorem on the approximation of a trigonometric sum by a shorter one" , Izvestiya: Mathematics, 71(2), pp. 341 – 370, doi.org/10.1070/IM2007v071n02ABEH002359
16. Whittaker, E. F. & Watson, G. N. 1927, "A course of modern analysis: an introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions . . . " Cambridge University Press.
17. Vaughan, R. C. 1981, The Hardy-Littlewood method, Cambridge Tracts in Mathematics, vol. 80, Cambridge University Press, Cambridge.
Review
For citations:
Rakhmonov Z.Kh., Nazrubloev N.N., Rakhimov A.О. SHORT WEYL SUMS AND THEIR APPLICATIONS. Chebyshevskii Sbornik. 2015;16(1):232-247. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-1-232-247