ON THE SOLVABILITY OF WARING’S EQUATION INVOLVING NATURAL NUMBERS OF A SPECIAL TYPE
https://doi.org/10.22405/2226-8383-2016-17-1-37-51
Abstract
This paper is a continuation of our research on additive problems of number theory with variables that belong to some special set. We have solved several well–known additive problems such that Ternary Goldbach’s Problem, Hua Loo Keng’s Problem, Lagrange’s Problem,Waring’s Problem. Asymptotic formulas were obtained for these problems with restriction on the set of variables. The main terms of our formulas differ from ones of the corresponding classical problems. In the main terms the series of the form
σk(N, a, b) =X |m|<∞ e2πim(ηN−0,5k(a+b)) sink πm(b − a) πkmk. appear. These series were investigated by the authors. Let η be the irrational algebraic number, a and b are arbitrary real numbers of the interval [0, 1]. There are natural numbers x1, x2, . . . , xk such that a 6 {ηxni } < b. In this paper we evaluate the smallest k for which the equation xn1 + xn2 + . . . + xnk = N is solvable.
About the Authors
S. A. GritsenkoRussian Federation
doctor of physical and mathematical sciences, professor of the chair Mathematics of the 1 Financial University under the Government of the Russian Federation, professor of the mechanics and mathematics faculty of the M. V. Lomonosov Moscow State University
N. N. Motkina
Russian Federation
Candidate of Physico-Mathematical Sciences, Associate Professor, Associate Professor at the Department of Mathematics, Faculty of Mathematics and Science Education, Institute of Pedagogy, Belgorod National Research University
References
1. Balog, A. & Friedlander, J. 1992, “A hybrid of theorems of Vinogradov and Piatetski-Shapiro”, Pacific J. Math., vol. 156, no. 1, pp. 45–62.
2. Vinogradov, I. M. 1937, “Representation of an odd number as a sum of three prime numbers”, DAN SSSR, vol. 15, pp. 291–294.
3. Vinogradov, I. M. 1940, “Some common property of distribution of prime numbers”, Mat. sb., vol. 7, no. 2, pp. 365–372.
4. Vinogradov, I. M. 1976, Osobye varianty metoda trigonometricheskikh summ (Russian), [Special variants of the method of trigonometric sums]. Nauka, Moscow, 120 p.
5. Vinogradov, I. M. 1980, Metod trigonometricheskikh summ v teorii chisel (Russian), [The method of trigonometric sums in the theory of numbers]. Second edition. Nauka, Moscow, 144 p.
6. Gritsenko, S. A. 1986, “On a problem of Vinogradov”, Mat. Zametki, vol. 39, issue 5, pp. 625– 640.
7. Gritsenko, S. A. 1988, “Ternary Goldbach’s problem and Goldbach–Waring’s problem with prime numbers lying in intervals of a special type”, Uspekhi Mat. Nauk, vol. 43, no. 4(262), pp. 203–204.
8. Gritsenko, S. & Motkina, N. 2008, “Ternary Goldbach’s Problem Involving Primes of a Special type”, arXiv.org, Cornell university library, Ithaca, NY, Available at: arXiv.org/abs/0812.4606 - 25 Dec 2008
9. Gritsenko, S. & Motkina, N. 2008, “Hua Loo Keng’s Problem Involving Primes of a Special Type”, arXiv.org, Cornell university library, Ithaca, NY, Available at: arXiv.org/abs/0812. 4665 – 26 Dec 2008
10. Gritsenko, S. & Motkina, N. 2011, “Representation of natural numbers by sums of four squares of integers having a special form”, Journal of Mathematical Sciences, vol. 173, no. 2, pp. 194–200.
11. Gritsenko, S. A. & Motkina, N. N. 2011, “On the calculation of some special series”, Chebyshevskii Sb., vol. 12, no. 4, pp. 85–92.
12. Gritsenko, S. A. & Motkina, N. N. 2014, “Waring’s problem involving natural numbers of a special type”, Chebyshevskii Sb., vol. 15, no. 3, pp. 31–47.
13. Deshouillers, J. M. 1993, “Sur la repartition des nombres [nc] dans les progressions arithmetiques”, Acad. Sc. Paris, t. 277, serie A, pp. 647–650.
14. Karatsuba, A. A. 1981, “About one problem with prime numbers”, DAN SSSR, vol. 259, no. 6, pp. 1291–1293.
15. Karatsuba, A. A. 1983, Osnovy analiticheskoi teorii chisel (Russian), [Fundamentals of the analytical number theory]. Second edition. Nauka, Moscow, 240 p.
16. Kaufman, R. M. 1979, “About distribution of {√ p}”, Mat. Zametki, vol. 26, issue 4, pp. 497–504.
17. Kloosterman, H. D. 1926, “On the representation of numbers in the form ax2+by2+cz2+dt2”, Acta mathematica, 49, pp. 407–464.
18. Kolesnik, G. 1985, “Prime numbers of the form [nc]”, Pacific J. Math., vol. 118, no. 2, pp. 437– 447.
19. Linnik, Y. V. 1945, “About one theorem of the theory of prime numbers”, DAN SSSR, vol. 47, pp. 7–8.
20. Pyatetskii-Shapiro, I. I. 1953, “On the distribution of prime numbers in sequences of the form [f(n)], Mat. sb., vol. 33(75), no. 3, pp. 559–566.
21. Hua, L. K. 1938, “On the representation of numbers as the sum of powers of primes”, Math. Z., 44, pp. 335–346.
22. Hua, Luo–Geng. 1964, Metod trigonometricheskikh summ i ego primeneniya v teorii chisel (Russian), [The method of trigonometric sums and its application in the number theory]. Mir, Moscow, 194 p.
23. Changa, M. E. 2003, “Primes in Special Intervals and Additive Problems with Such Numbers”, Mat. Zametki, vol. 73, issue 3, pp. 423–436.
Review
For citations:
Gritsenko S.A., Motkina N.N. ON THE SOLVABILITY OF WARING’S EQUATION INVOLVING NATURAL NUMBERS OF A SPECIAL TYPE. Chebyshevskii Sbornik. 2016;17(1):37-51. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-1-37-51