Preview

Чебышевский сборник

Расширенный поиск

ОБ ОДНОМ ПОДХОДЕ К ПОСТРОЕНИЮ ХАОТИЧЕСКИХ СИСТЕМ-ХАМЕЛЕОНОВ

https://doi.org/10.22405/2226-8383-2017-18-4-127-138

Полный текст:

Аннотация

Сегодня хорошо известно, что динамические системы можно подразделить на системы с самовозбуждающимися и системы со скрытыми аттракторами. Cамовозбуждающийся аттрактор имеет область притяжения, которая примыкает к неустойчивым состояниям равновесия системы, в то время как скрытые аттракторы имеют области притяжения, не пересекающиеся с малыми окрестностями ни одного из состояний равновесия. Скрытые аттракторы играют важную роль в инженерных приложениях, поскольку их наличие вызывает неожиданные и потенциально опасные ответы на возмущения, например, в таких структурах как мост, или крыло самолета. Кроме того, сложное поведения хаотических систем используют в различных областях, от таких, как изображения водяных знаков, аудио схема шифрования, хаотическая маскировка коммуникаций, до генераторов случайных чисел. Недавно исследователями были обнаружены так называемые "системы-хамелеоны". Эти системы были так названы потому, что они демонстрируют самовозбуждающиеся или скрытые колебания в зависимости от значений входящих в них параметров. В настоящей работе предлагается простой алгоритм синтезирования однопараметрических системхамелеонов. Отслеживается эволюция ляпуновских показателей и размерности КапланаЙорке таких систем при изменении параметра.

Об авторе

И. М. Буркин

Россия
Тула.


Список литературы

1. Lorenz, E. N. 1963, "Deterministic nonperiodic flow". J.Atmos.Sci., vol.20, pp.65 -75.

2. R¨ossler, O. E. 1976, "An Equation for Continuous Chaos". Physics Letters A, vol. 57, no.5, pp.397 -398.

3. Chua, L. O. 1992, "A zoo of Strange Attractors from the Canonical Chua’s Circuits". Proc. Of the IEEE 35th Midwest Symp. on Circuits and Systems (Cat. No.92CH3099-9). Wash-ington, vol. 2, pp. 916 – 926.

4. Leonov G. A., Kuznetsov N. V., Vagaitsev V. I. 2011 "Localization of hidden Chua’s at-tractors". Phys. Lett. A, vol. 375, pp.2230-2233.

5. Sharma P. R. , Shrimali M.D , Prasad A , Kuznetsov N.V , Leonov G.A. 2015, "Control of multistability in hidden attractors". Eur Phys J Spec Top; vol. 224,no.8, pp.1485–1491 .

6. Sharma P. R. , Shrimali M.D , Prasad A , Kuznetsov N.V , Leonov G.A . 2015, "Controlling dynamics of hidden attractors".Int. J. Bifurcation and Chaos, vol. 25, no.4:1550061.

7. Pham V-T, Volos C. , Jafari S. , Wei Z. , Wang X . 2014, "Constructing a novel no-equilib- rium chaotic system". Int J Bifurcation and Chaos, vol. 24,no.5:1450073 .

8. Tahir F. R. , Jafari S. , Pham V-T. , Volos C , Wang X . 2015, "A novel no-equilibrium chaot-ic system with multiwing butterfly attractors". Int J Bifurcation and Chaos, vol.25, no.4:1550056.

9. Jafari S, Pham V-T., Kapitaniak T . 2016, "Multiscroll chaotic sea obtained from a simple 3d system without equilibrium". Int J Bifurcation and Chaos, vol.26,no.2:1650031.

10. Molaie M., Jafari S., Sprott J. C., Golpayegani SMRH 2013, "Simple chaotic flows with one stable equilibrium". Int J Bifurcation and Chaos, vol.23, no.11:1350188.

11. Kingni S. T., Simo H., Woafo P. 2014, "Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchroni-zation and its fractional-order form". Eur Phys J Plus, vol.129, no.5, pp.1–16 .

12. Pham V-T , Jafari S., Volos C. , Giakoumis A/ , Vaidyanathan S. , Kapitaniak T. 2016, "A chaotic system with equilibria located on the rounded square loop and its circuit implementation". IEEE Trans Circuits Syst II, vol.63,no.9, pp.878–882.

13. Pham V-T., Jafari S., Volos C., 2017, "A novel chaotic system with heart-shaped equilibrium and its circuital implementation". Optik, vol. 131, pp. 343–349.

14. Rajagopal K., Karthikeyan A., Duraisamy P. 2017,"Hyperchaotic chameleon: fractional order FPGAimplementation". Complexity Volume 2017. Available at: https://www.hindawi. com/journals/complexity/aip/8979408/.

15. Rajagopal K., Akgul A. , Jafari S. , Karthikeyan A., Koyuncu I. 2017, " Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses". Chaos, Solitons and Fractals, vol.103, pp.476-487.

16. Буркин И. М., Нгуен Нгок Хиен. Аналитико-численные методы поиска скрытых колебаний в многомерных динамических системах // Диф. уравнения, 2014, т. 50, № 13. С.1695–1717.

17. Sprott, J. C. 2011, “A new chaotic jerk circuit”. IEEE Trans. Circuits Syst.-II: Expr. Briefs, vol. 58, pp. 240–243.

18. Sprott, J. C., Fatma Y. D., 2016, "Simple Chaotic Hyperjerk System". Int. J. Bifurcation and Chaos,vol. 26, no.11: 1650189.

19. Буркин И. М. О явлении буферности в многомерных динамических системах // Диф. уравнения, 2002, т.38, №5. С. 615-625.

20. Буркин И. М. Скрытые аттракторы некоторых мультистабильных систем с бесконеч-ным числом состояний равновесия // Чебышевский сборник,2017,т.18. № 2 (62). С. 18-33.

21. Leonov G. A., Kuznetsov N. V., Mokaev T. N. 2015, "Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion". The Eu-ropean Physical Journal Special Topics, Multistability: Uncovering Hidden Attractors, vol. 224, no. 8, pp. 1421–1458,doi:10.1140/epjst/e2015-02470-3.


Для цитирования:


Буркин И.М. ОБ ОДНОМ ПОДХОДЕ К ПОСТРОЕНИЮ ХАОТИЧЕСКИХ СИСТЕМ-ХАМЕЛЕОНОВ. Чебышевский сборник. 2017;18(4):127-138. https://doi.org/10.22405/2226-8383-2017-18-4-127-138

For citation:


Burkin I.M. ABOUT ONE APPROACH TO CONSTRUCTION OF CHAOTIC CHAMELEONS SYSTEMS. Chebyshevskii Sbornik. 2017;18(4):127-138. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-4-127-138

Просмотров: 146


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)