Preview

Chebyshevskii Sbornik

Advanced search

IMPLICIT FINITE DIFFERENCE SCHEME FOR BAROTROPIC GAS EQUATIONS

https://doi.org/10.22405/2226-8383-2017-18-3-304-315

Abstract

An implicit finite difference scheme approximated barotropic gas equations is proposed. This scheme ensures positivity of density  compared to previous methods. Existence of a solution to this scheme is proved for any time and space mesh-steps, an iterative method for  solving the system of nonlinear equations on each time step is proposed.

About the Authors

G. M. Kobel’kov
Lomonosov Moscow State University
Russian Federation

doctor of physics and mathematics, professor, head of the  department computational mathematics of the faculty of mechanics and mathematics



A. G. Sokolov
Lomonosov Moscow State University
Russian Federation

candidate of physical and mathematical sciences, senior  research of chairs computational mathematics of the faculty of mechanics and mathematics



References

1. Belotserkovskii O.M., Vasil’ev М.О., Vedernikov А.B., Dymnikov V.P., Zamyshlyaev B.V., Krysanov B.Yu., Kovshov N.V., Kunitsyn V.Е., Molokov Е.А., Repin А.Yu., Sidorenkova N.А., Stupitskii Е.L., Kholodov Ya.А., Kholodov А.S. Numerical simulation of some problems of interaction of Earth’s lithosphere, hydrosphere and atmosphere. In book: [Hystory fragments and achievements of the Design Automatization Institute of Russian Academy of Sciences. 1986-2011], Publishing House " Johnatan flight" . Институт автоматизации проектирования РАН, ООО ИЦ " Полет Джонатана" , 2011, с. 14 - 71.

2. Popov I.V., Fryazinov I.V. Метод адаптивной искусственной вязкости численного решения уравнений газовой динамики Metod adaptivnoy iskusstvennoy vyazkosti [Adaptive artificial viscosity method]. Moscow: Krasand, 2014.

3. Antontsev S.N., Kazhikhov А.V., Monakhov V.N. Краевые задачи механики неоднородных жидкостей Kraevye zadachi mekhaniki neodnorodnykh zhidkostey [ Boundary value problems of inhomogenious flows]. Новосибирск, Наука, 1983.

4. Amosov А.А., Zlotnik А.А., Разностные схемы второго порядка точности для уравнений одномерного движения вязкого газа. Raznostnye skhemy vtorogo poryadka tochnosti dlya uravneniy odnomernogo dvizheniya gaza [Second order accuracy finite difference schemes for 1D viscous gas flow] Ж. вычисл. матем. и матем. физ., 1987, т. 27, №7, с.1032–1049

5. Kulikovskii А.G., Pogorelov N.V., Semenov А.Yu. Математические вопросы численного решения гиперболических систем уравнений. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem [Mathematical problems of numerical solution of systems of hyperbolic equations] М.: Наука, 2001.

6. Lions P.-L. Mathematical Topics in Fluid Mechanics. V.2. Compressible Models. Oxford Lecture Series in Mathematics and its Applications 10. Oxford: Clarendon Press, 1998.

7. Ladyzhenskaya О.А. Математические вопросы динамики вязкой несжимаемой жидкости Matematicheskie voprosy dinamiki vyazkoy neszhimaemoy zhidkosti [The Mathematical Theory of Viscous Incompressible Flow]. М.: Наука, 1970.


Review

For citations:


Kobel’kov G.M., Sokolov A.G. IMPLICIT FINITE DIFFERENCE SCHEME FOR BAROTROPIC GAS EQUATIONS. Chebyshevskii Sbornik. 2017;18(3):304-315. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-3-304-315

Views: 474


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)