IMPLICIT FINITE DIFFERENCE SCHEME FOR BAROTROPIC GAS EQUATIONS
https://doi.org/10.22405/2226-8383-2017-18-3-304-315
Abstract
An implicit finite difference scheme approximated barotropic gas equations is proposed. This scheme ensures positivity of density compared to previous methods. Existence of a solution to this scheme is proved for any time and space mesh-steps, an iterative method for solving the system of nonlinear equations on each time step is proposed.
About the Authors
G. M. Kobel’kovRussian Federation
doctor of physics and mathematics, professor, head of the department computational mathematics of the faculty of mechanics and mathematics
A. G. Sokolov
Russian Federation
candidate of physical and mathematical sciences, senior research of chairs computational mathematics of the faculty of mechanics and mathematics
References
1. Belotserkovskii O.M., Vasil’ev М.О., Vedernikov А.B., Dymnikov V.P., Zamyshlyaev B.V., Krysanov B.Yu., Kovshov N.V., Kunitsyn V.Е., Molokov Е.А., Repin А.Yu., Sidorenkova N.А., Stupitskii Е.L., Kholodov Ya.А., Kholodov А.S. Numerical simulation of some problems of interaction of Earth’s lithosphere, hydrosphere and atmosphere. In book: [Hystory fragments and achievements of the Design Automatization Institute of Russian Academy of Sciences. 1986-2011], Publishing House " Johnatan flight" . Институт автоматизации проектирования РАН, ООО ИЦ " Полет Джонатана" , 2011, с. 14 - 71.
2. Popov I.V., Fryazinov I.V. Метод адаптивной искусственной вязкости численного решения уравнений газовой динамики Metod adaptivnoy iskusstvennoy vyazkosti [Adaptive artificial viscosity method]. Moscow: Krasand, 2014.
3. Antontsev S.N., Kazhikhov А.V., Monakhov V.N. Краевые задачи механики неоднородных жидкостей Kraevye zadachi mekhaniki neodnorodnykh zhidkostey [ Boundary value problems of inhomogenious flows]. Новосибирск, Наука, 1983.
4. Amosov А.А., Zlotnik А.А., Разностные схемы второго порядка точности для уравнений одномерного движения вязкого газа. Raznostnye skhemy vtorogo poryadka tochnosti dlya uravneniy odnomernogo dvizheniya gaza [Second order accuracy finite difference schemes for 1D viscous gas flow] Ж. вычисл. матем. и матем. физ., 1987, т. 27, №7, с.1032–1049
5. Kulikovskii А.G., Pogorelov N.V., Semenov А.Yu. Математические вопросы численного решения гиперболических систем уравнений. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem [Mathematical problems of numerical solution of systems of hyperbolic equations] М.: Наука, 2001.
6. Lions P.-L. Mathematical Topics in Fluid Mechanics. V.2. Compressible Models. Oxford Lecture Series in Mathematics and its Applications 10. Oxford: Clarendon Press, 1998.
7. Ladyzhenskaya О.А. Математические вопросы динамики вязкой несжимаемой жидкости Matematicheskie voprosy dinamiki vyazkoy neszhimaemoy zhidkosti [The Mathematical Theory of Viscous Incompressible Flow]. М.: Наука, 1970.
Review
For citations:
Kobel’kov G.M., Sokolov A.G. IMPLICIT FINITE DIFFERENCE SCHEME FOR BAROTROPIC GAS EQUATIONS. Chebyshevskii Sbornik. 2017;18(3):304-315. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-3-304-315