CHARACTER SUMS OVER SHIFTED POWERS
https://doi.org/10.22405/2226-8383-2017-18-2-267-274
Abstract
About the Author
Yu. N. ShteinikovRussian Federation
References
1. Hong Bing Yu, Estimates of character sums with exponential function // Acta Arithmetica 2001. vol. 97, no. 3, pp. 211-218.
2. M. Z. Garaev, On the logarithmic factor in error term estimates in certain additive congruence problems Acta Arith 2006. Vol 124, pp. 27–39.
3. L. Goldmakher, Multiplicative mimicry and improvements of the P?lya-Vino gradov inequality Algebra and Number Theory 2012. vol. 6, no. 1, pp. 123–163.
4. C. Dartyge and A. S´ark¨ozy, On additive decompositions of the set of primitive roots modulo ???? Monatsh. Math. 2013. vol 169, pp. 317–328.
5. K. Gong, C. Jia, M.A. Korolev, Shifted character sums with multiplicative coefficients, II J. Number Theory 2017, vol 178, pp. 31–39.
6. D.A. Frolenkov A numerically explicit version of the Polya-Vinogradov inequality Moscow journal of Combinatorics and Number Theory 2011, vol 1, no. 3, pp. 25–41.
7. D. A. Frolenkov, K. Soundararajan A generalization of the Po?lya–Vinogradov inequality Ramanujan J. 2013. vol 31, no 3 , pp. 271–279.
8. C. Pomerance Remarks on the Polya-Vinogradov inequality IMRN 2011, vol 151, pp. 30–41.
9. E. Dobrowolski K. S. Williams An upper bound for the sum ∑︀????+???? ????=????+1 ????(????)for a certain class of funktions f Proccedings of the American Mathematical Society, 1992, vol 114, no 1, pp. 29–35.
10. I. M. Vinogradov A new improvement of the method of estimation of double sums (Russian) Doklady Akad. Nauk SSSR (N.S) 1950, vol 73, pp. 635–638.
11. A. Granville, K. Soundararajan Large character sums: pretentious characters and the PolyaVinogradov theorem J. Amer. Math. Soc. (N.S) 2007, vol.20, pp. 357–384.
12. G. Bachman, L. Rachakonda On a problem of Dobrowolski and Williams and the PolyaVinogradov inequality Ramanujan J. 2001, vol 5, pp. 65–71.
13. I. M. Vinogradov Basics of number theory// Gostechizdat (1952), pp. 1–180.
14. A. A. Karatsuba Basics of analytic number theory. URSS (2004), pp. 1–182.
15. T. Tao , V. Vu Additive combinatorics. Cambridge University Press 2006, pp. 1-530.
Review
For citations:
Shteinikov Yu.N. CHARACTER SUMS OVER SHIFTED POWERS. Chebyshevskii Sbornik. 2017;18(2):267-274. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-2-267-274