Preview

Chebyshevskii Sbornik

Advanced search

TWO-SIDED ESTIMATES OF GAMMA-FUNCTION ON THE REAL SEMIAXIS

https://doi.org/10.22405/2226-8383-2017-18-2-205-221

Abstract

In this paper we present new two-sided estimates of gamma-function Γ(x + 1) on the real semiaxis x > 0. Based on this result, we improve well-known estimates for the factorial n!, which hold for all n ≥ 1. Some of obtained estimates of gamma-function Γ(x+1) hold only for x ≥ 1/2 and some only for x ≥ 1. The main estimates are connected to the notion of alternation round of a function by asymptotic series in the strong sense. However such a strong alternation is proved only for several partial sums. We have a conjecture that the asymptotic series alternates round a logarithm of gamma-function in strong sense. Similary we propose new inequalities for the number of n-combination from 2n. These considerations indicate that next investigation is promissing and give a method for construction of new two-sided estimates for functions having alternating asymptotic series.

About the Author

A. Yu. Popov

Russian Federation


References

1. Whittaker, E. T. & Watson, G. N. 1927, A Course of Modern Analysis., 4th ed., Cambridge: Cambridge University Press, part 2, 616 рр.

2. Gelfond, A. O. 1967, Ischislenie conechnyh raznostej [Calculus of Finite Differences]., Nauka, Moscow, 432 pp.

3. Lang, S 1973, Elliptic functions. Addison-Wesley publishing company Inc., London. Amsterdam. Dod Mills. Ontario. Sydney. Tokio, 326 pp.

4. Machis, Yu. Yu. 2007, “About Stirling’s formula”, Liet. Matem. Rink., vol. 47, spec.nr., pp. 526- 530.

5. Robbins, Н 1955, “A remark on Stirling’s formula”, The American mathematical monthly, vol. 62, no 1(Jan), pp. 26-29.

6. Sonin, N 1889, “Sur les termes complementaires de la formule sommatoire d’Euler et de celle de Stirling”, Annales de l’Ecol norm., ser. 3., t. 6, pp. 257-262.

7. Sonin N. Ya. 1954, Issledovaniya o cilindricheskih funkciyah i specialnyh polinomah [Investigations of cylinder functions and special polynomials]., GITTL, Moscow, 244 pp.

8. Kupcov L. P. 1977, “Gamma-function”, Matematicheskaya-ehnciklopediya, Sovetskaya ehnciklopediya, Moscow, vol. 1, 866-870 pp.

9. Prudnikov, A. P., Brychkov, Yu. A. & Marichev, O. I. 1981, Integraly-i-ryady [Integrals and series]., Nauka, Moscow, vol. 1, 800 pp.

10. Fedoryuk, M. V. 1982, “Wrapping series”, Matematicheskaya-ehnciklopediya, Sovetskaya ehnciklopediya, Moscow, vol.3, 1096 p.

11. Hardy, G. H. 1949, Divergent Series, Oxford Univ. Pr, Oxford, 396 pp.

12. Polya, G. & Szego, G. 1925, Aufgaben und Lehrsatze aus der Analysis I, Reihen. Integralrechnung. Funktionentheorie [Texte imprime], Springer, Berlin, 338 s.

13. Ahiezer, N. I. 1970. Ehlementy-teorii-ehllipticheskih-funkcij [Elements of the theory of elliptic functions]. 2nd ed., Nauka, Moscow, 304 pp.

14. Belov, A. S. 2016, “An estimate of the remainder term in the asymptotic solution of an extremal problem connected with nonnegative trigonometric polynomials”, Mat. notes., vol. 100, no. 2, 303–307 pp.

15. Tihonov, I. V., Sherstyukov, V. B. & Petrosova, M. A. “Bernstein polynomials: old and new” Matematicheskij forum ch.1 Issledovaniya po matematicheskomu analizu(Mathematical forum Ch. 1. Studies in mathematical analysis), Vladikavkaz, 2014. vol. 8, pp.126–175.


Review

For citations:


Popov A.Yu. TWO-SIDED ESTIMATES OF GAMMA-FUNCTION ON THE REAL SEMIAXIS. Chebyshevskii Sbornik. 2017;18(2):205-221. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-2-205-221

Views: 814


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)