Preview

Chebyshevskii Sbornik

Advanced search

ON FRACTIONAL LINEAR TRANSFORMATIONS OF FORMS A. TUE — M. N. DOBROVOLSKY — V. D. PODSYPININA

https://doi.org/10.22405/2226-8383-2017-18-2-54-97

Abstract

The work builds on the algebraic theory of polynomials Tue. The theory is based on the study of submodules of Z[????]-module Z[????] 2 . Considers submodules that are defined by one defining relation and one defining relation ????-th order. More complex submodule is the submodule given by one polynomial relation. Sub par Tue ????-th order are directly connected with polynomials Tue ????-th order. Using the algebraic theory of pairs of submodules of Tue ????-th order managed to obtain a new proof of the theorem of M. N. Dobrowolski (senior) that for each ???? there are two fundamental polynomial Tue ????-th order, which are expressed through others. Basic polynomials are determined with an accuracy of unimodular polynomial matrices over the ring of integer polynomials.

In the work introduced linear-fractional conversion of TDP-forms. It is shown that the transition from TDP-forms associated with an algebraic number ???? to TDP-the form associated with the residual fraction to algebraic number ????, TDP-form is converted under the law, similar to the transformation of minimal polynomials and the numerators and denominators of the respective pairs of Tue is converted using the linear-fractional transformations of the second kind. 

About the Authors

N. M. Dobrovol’skii
Tula State L. N. Tolstoy Pedagogical University
Russian Federation

doctor of physical and mathematical sciences, professor, head of the Department algebra, calculus and geometry



I. N. Balaba
Tula State Lev Tolstoy University
Russian Federation

doctor of physico-mathematical Sciences, assistant professor, Professor of the Department of Algebra, Mathematical Analysis and Geometry



I. Yu. Rebrova
Tula State Lev Tolstoy University
Russian Federation

Candidate of Physical and Mathematical Sciences, Associate Professor, Dean of the Faculty of Mathematics, Physics and Informatics



N. N. Dobrovol’skii
Tula State Lev Tolstoy University
Russian Federation

candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science



E. A. Matveeva
Tula State Lev Tolstoy University
Russian Federation
Postgraduate student of the Department of algebra, mathematical analysis and geometry


References

1. Van der Waerden, B. L. 1976 Algebra. Moscow: Iz-in "Science".

2. Weyl G. 1947 Algebraic number theory. M .: GI I * L.

3. Gauss K. F. 1959 Proceedings on the theory of numbers. Translation of B. B. Demyanov, general edition I. M. Vinogradova, comments B. N. Delone. - Moscow: Publishing House of the USSR Academy of Sciences. 978 p.

4. Dobrovol’skii M. N. 2010 "On the decomposition of irrationalities of the third degree into continuous fractions"Chebyshevsky Sb. vol. XI, №. 4 (36). pp. 4–24.

5. Dobrovol’skii N. M., Dobrovolsky N. N. 2010, "On the forms of A. Thue M. N. Dobrovolsky — V. D. Podsypinina"Chebyshevsky sb. vol. XI, №. 4 (36). pp. 70–109.

6. N. M. Dobrovol’skii, N. N. Dobrovol’skii, 2015 “About minimal polynomial residual fractions for algebraic irrationalities”, Chebyshevskii Sb., 16:3, pp. 147–182

7. N. M. Dobrovol’skii, N. N. Dobrovol’skii, I. N. Balaba, I. Yu. Rebrova, N. S. Polyakova, 2015 "Fractional-linear transformations of polynomials and linear transformations of forms"Proceedings of the XIII International Conference Algebra, number theory and discrete geometry: modern problems and applications, Supplementary volume. Tula: Publishing house Tul. State. Ped. The university of L. N. Tolstoy. pp. 134–149.

8. N. M. Dobrovolsky, N. N. Dobrovolsky, D. K. Sobolev, V. N. Soboleva, 2017 "Classification of purely real algebraic irrationalities" , Chebyshevsky Sb. Vol. 18, no. 2. pp. 98–128.

9. N. M. Dobrovol’skii, D. K. Sobolev, V. N. Soboleva, 2013 “On matrix decomposition of one reduced cubic irrational”, Chebyshevskii Sb., 14:1, pp. 34–55

10. N. M. Dobrovol’skii, E. I. Yushina "On reduced algebraic irrationalities"Algebra and Applications: Proceedings of the International Conference on Algebra LA Kaluzhnina, Nalchik, September 6-11, 2014 - Nalchik Iz-in Kabardino-Balkarian State University. pp. 44–46.

11. N. M. Dobrovol’skii, N. N. Dobrovol’skii, E. I. Yushina, 2012 “On the matrix form of the Galois theorem on purely periodic continued fractions”, Chebyshevskii Sb., 13:3, 47–52

12. Davenport G. 1965 Higher arithmetic. Introduction to number theory. Iz-in From the "Science".

13. A. I. Kostrikin, 2001 Introduction to Algebra. Part III. Basic structures: Textbook for high schools. — 2 nd ed., Correct. M .: Physical and mathematical literature, — 272 p. — ISBN 5-9221-0166-8.

14. Lezhen Dirichlet P. G. 1936 Lectures on number theory. М — L .: ONTI NKTP of the USSR.

15. E. A. Morozova 2015 "Thue polynomials for quadratic irrationalities" Algebra, number theory and discrete geometry: Contemporary problems and applications: Proceedings of the XIIIth International Conference. Conf., Dedicated to the 85th anniversary of the birth of Professor Sergey Sergeevich Ryshkov Tula: Izd-vo Tul. State. Ped. Un-ta L. N. Tolstoy, pp. 354–356.

16. E. A. Morozova 2015 "Thue polynomials for quadratic irrationalities" Algebra, number theory and discrete geometry: Contemporary problems and applications: Proceedings of the XIIIth International Conference. Conf .: [Ext. Tom]. Tula: Publishing House Tul. State. Ped. Un-ta them. L.N. Tolstoy, pp. 161-168.

17. E. A. Morozova 2016 "Thue polynomials for quadratic irrationalities" Mathematics and Computer Science: Proceedings of the International Conference (Moscow, March 14-18, 2016) / — M .: MPGU pp. 127–130.

18. Podsypanin V. D. 1968 "On the decomposition of irrationalities of the fourth degree into an continued fraction" Materials of the Interuniversity Scientific Conference of Mathematical Departments Pedagogical institutes of the Central zone. Tula, pp. 68–70.

19. Podsypanin V. D. 2007 "On the decomposition of irrationalities of the fourth power into an continued fraction Chebyshevskii sbornik. T. VIII, vol. 3 (23). — Tula: Izd-vo Tul. State. Ped. Un-ta them. L.N. Tolstoy, pp. 43–46.

20. Podsypanin V. D. 2010 "On Thue polynomials and the expansion of irrationalities of the fourth degree into a continued fraction"Chebyshevskii sbornik. T. XI, vol. 4 (36). pp. 25–69.

21. Podsypanin E. V. 2007 "On the decomposition of irrationalities of higher powers into a generalized continued fraction (On the materials of VD Podsypanin) manuscript 1970"Chebyshevskii sbornik T. 8, issue 3 (23). pp. 47–49.

22. E. V. Podsypinin 1977 "On a generalization of the algorithm of continued fractions associated with the Viggo Brun algorithm"Zap. Scientific. Sem. LOMI. Т. 67. pp. 184–194.

23. A. K. Sushkevich 1956 Number theory. Elementary course. — 2 nd ed. — Kharkov: Publishing house of Kharkov state. Un-ta them. AM Gorky, — 204 p.

24. E .V .Trikolich, E. I. Yushina 2009 "Chain fractions for quadratic Irrationalities from the field Q( √ 5)" Chebyshevsky sb. T. 10, no. 1. pp. 77–94.

25. Feldman N. I. 1981 Approximation of algebraic numbers. — Moscow: Izd-vo Mosk. University, p. 200

26. Khinchin A. Ya. 1949 Chain fractions. — 2 nd ed. М .: — L .: GITTL, p. 116

27. Schmidt V. M. 1983 Diophantine approximations: Per. With the English. Moscow: Mir, — 232 p. 28. E. I. Yushina 2015 "On some reduced algebraic irrationalities" Modern problems in mathematics, mechanics, informatics: materials of the Regional Scientific Student Conference. Tula: Tula State University. pp. 66–72.

28. E. I. Yushina 2015 "On some generalized Piso numbers" University of the XXI century: research within the framework of scientific schools: materials of the All-Russian Scientific and Practical Conference. Tula: TSPU them. L.N. Tolstoy. pp. 66–72.

29. Nikolai M. Dobrovol’skii, Nikolai N. Dobrovolsky, Irina N. Balaba, Irina Yu. Rebrova, Dmitrii K. Sobolev and Valentina N. Soboleva Generalized Pisot Numbers and Matrix Decomposition // Springer International Publishing Switzerland 2016 V. A. Sadovnichiy and M. Z. Zgurovsky (eds.), Advances in Dynamical Systems and Control, Studies in Systems, Decision and Control 69, DOI 10.1007/978-3-319-40673-2_5

30. Euler L. De fractinibus continuis // Comm. Acad. Sci. Imper. Petropol., 1737, v. 9.

31. Euler L. De relatione inter ternas pluresve quantitates instituenda // Petersburger Akademie Notiz. Exhib. August 14, 1775 // Commentationes arithmeticae collectae. V. II. St. Petersburg, 1849. P. 99-104.

32. Galois E. Th´eor`eme sur les fractions contiues p´eriodiques — Annales de Mathematiques (Gergonne), 1828/29, t. 19, p. 294; Oeuvres mathematiques. — Paris: Gauthier Villars, 1951. [Имеется перевод: Галуа Э. Сочинения. — М.: ОНТИ, 1936.]

33. Lagrange J. L. Complement chez Elements d’algebre etc. par M.L. Euler, t. III, 1774.

34. Liouville J. Sur des classes tr`es-´etendues de quantit´es dont la irrationelles alg´ebriques // C. R. Acad. Sci. Paris 18, 1844, С. 883–885, 910–911.

35. Roth K. F. Rational approximations to algebraic numbers // Mathematika. 1955. Vol. 2. P. 1–20. corrigendum: p. 168.

36. Thue A. Uber Ann¨aherungswerte algebraischer Zahlen // J. reine ang. Math. 1910. Vol. 135. ¨ PP. 284–305.


Review

For citations:


Dobrovol’skii N.M., Balaba I.N., Rebrova I.Yu., Dobrovol’skii N.N., Matveeva E.A. ON FRACTIONAL LINEAR TRANSFORMATIONS OF FORMS A. TUE — M. N. DOBROVOLSKY — V. D. PODSYPININA. Chebyshevskii Sbornik. 2017;18(2):54-97. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-2-54-97

Views: 722


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)