Preview

Chebyshevskii Sbornik

Advanced search

A COMPUTER PROOF OF THE HYPOTHESIS ABOUT OF CENTROIDS

https://doi.org/10.22405/2226-8383-2017-18-1-73-91

Abstract

This article provides a proof of the "hypothesis about of centroids", which is given in the "Experimental validation of hypotheses in GeoGebra and published in the current issue of the "Сhebyshevskiy sbornik". This hypothesis is formulated as follows: "Let are a non-degenerate triangle from each vertex held the median. Then the original triangle is split into six triangles without common interior points so that their centroids lie on the same ellipse. The proof of the hypothesis is based on symbolic computation, implemented in ve packages of computer mathematics GeoGebra, Mathcad Prime, Maxima, Maple and Mathematica [2-8]. The use of dierent systems of symbolic computation for solving a problem allows to obtain visual material for comparative assessment of these systems. In the nal part of the article oers to consider another statement: "the hypothesis about of circumcenters". It is formulated so: "Let the three cevian intersect inside acute-angled triangle in the circumcenter. Then the original triangle is split into six triangles without common interior points so that their circumcenters lie on the same ellipse. This hypothesis was proposed and conrmed experimentally, using a dynamic model constructed in GeoGebra.

About the Authors

A. R. Еsаyan
Tula State L.N. Tolstoy Pedagogical University
Russian Federation

doctor of pedagogical sciences, professor, professor



N. N. Dobrovolsky
Tula State University
Russian Federation

candidate of physical and mathematical sciences, assistant of the department of applied mathematics and computer science



References

1. Akopyan A. V., Zaslavsky A. A. 2007, Geometric properties of curves of the second order, Moscow: mtsnmo, Moscow, -136 p.

2. Esayan A. R. PTC Mathcad Prime 3. 1, monograph, A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, A. V. Yakushin, M. Abdurazakov. Tula, ed. Tula gospeduniversitet, 2016, -400 p.

3. Esayan A. R. Programming in Maple, A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, V. A. Shulyuov. Tula, ed. Tula gospeduniversitet, 2007, -334 p.

4. Esayan A. R. Creating new tools in GeoGebra. The reviewed collective monograph ``Problems of modernization of modern education'', Kaluga 2016, p. 29-59

5. Esayan, A. R. Maxima. The data and graphics. / A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, A. B. Yakushin. --Tula, ed. Tula gospeduniversitet, 2011 -- 367 p

6. Esayan A. R. Maxima. Programming in Maxima. / A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky, A. B. Yakushin. --Tula, ed. Tula gospeduniversitet, 2012 --351 p

7. Esayan A. R. The Creative laboratory Mathematica: System, data, and graphics. In 2 parts, Part 1 / A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky. --Tula, ed. Tula gospeduniversitet, 2005. -296 c.

8. Esayan A. R. The Creative laboratory Mathematica. Programming, functions, algebra and analysis / A. R. Esayan, V. N. Chubarikov, N. M. Dobrovolsky. --Tula, ed. Tula gospeduniversitet, 2005 -- p. 258

9. Kimberling, C. Triangle Centers and Central Triangles, Congr. Numer. 129, 1998. p. 1-295.

10. Korn G., Korn T. Mathematical Handbook for Scientists and Engineers/ M. : Nauka, 1968

11. Osipov N. N., A computer proof of the theorem about incentro. Mathematical education. Third series, volume 18, M. : Ed. Mtsnmo, 2014, pp. 205-216

12. Steingarts L. A., Orbits оf Zhukov and theorem of Morley. Mathematics in school, №. 6, 2012, pp. 53-61


Review

For citations:


Еsаyan A.R., Dobrovolsky N.N. A COMPUTER PROOF OF THE HYPOTHESIS ABOUT OF CENTROIDS. Chebyshevskii Sbornik. 2017;18(1):73-91. (In Russ.) https://doi.org/10.22405/2226-8383-2017-18-1-73-91

Views: 674


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)