Preview

Chebyshevskii Sbornik

Advanced search

ON A. V. MALYSHEV’S APPROACH TO MINKOWSKI’S CONJECTURE CONCERNING THE CRITICAL DETERMINANT OF THE REGION |x|p + |y|p < 1 for p > 1

https://doi.org/10.22405/2226-8383-2016-17-4-185-193

Abstract

We present A. V. Malyshev‘s approach to Minkowski‘s conjecture (in Davis‘s amendment) concerning the critical determinant of the region |x|p+ |y|p< 1 for p > 1 and Malyshev‘s method. In the sequel of this article we use these approach and method to obtain the main result.

About the Author

N. M. Glazunov
National Aviation University
Russian Federation


References

1. Korkin A., Zolotarev G. 1872, “Sur les formes quadratiques positives quaternaires”, Math. Ann., vol. 5, 581–583.

2. H. Minkowski, Diophantische Approximationen, Leipzig: Teubner (1907).

3. H. Minkowski, Geometrie der Zahlen, Berlin–Leipzig: Teubner (1910).

4. L. J. Mordell, Lattice points in the region |Ax4|+|By4| ≥ 1, J. London Math. Soc. 16 , 152–156 (1941).

5. C. Davis, Note on a conjecture by Minkowski, J. London Math. Soc., 23, 172–175 (1948).

6. J. Cassels, An Introduction to the Geometry of Numbers, Berlin: Springer-Verlag (1971).

7. H. Cohn, Minkowski’s conjectures on critical lattices in the metric {||p + ||p}1/p, Annals of Math., 51, (2), 734–738 (1950).

8. G. Watson, Minkowski’s conjecture on the critical lattices of the region |x|p + |y|p ≤ 1 , (I), (II), Jour. London Math. Soc., 28, (3, 4), 305–309, 402–410 (1953).

9. A. Malyshev, Application of computers to the proof of a conjecture of Minkowski’s from geometry of numbers. I, Zap. Nauchn. Semin. LOMI, 71, 163–180 (1977).

10. A. Malyshev, Application of computers to the proof of a conjecture of Minkowski’s from geometry of numbers. II, Zap. Nauchn. Semin. LOMI, 82, 29–32 (1979).

11. A. Malyshev, A. Voronetsky, The proof of Minkowski’s conjecture concerning the critical determinant of the region |x|p + |y|p < 1 for p > 6, Acta arithm., v. 71, 447–458 (1975).

12. N. Glazunov, A. V. Malyshev, On Minkowski’s critical determinant conjecture,Kibernetika, No. 5, 10–14 (1985).

13. N. Glazunov, A. Malyshev. The proof of Minkowski‘s conjecture concerning the critical determinant of the region |x|p+|y|p < 1 near p = 2,(in Russian), Doklady Akad. Nauk Ukr.SSR ser.A, 7 .P.9–12 (1986).

14. N. Glazunov, A. Golovanov, A. Malyshev, Proof of Minkowski’s hypothesis about the critical determinant of |x|p+|y|p < 1 domain, Research in Number Theory 9. Notes of scientific seminars of LOMI. 151 Leningrad: Nauka. 40–53 (1986).

15. Mumford D. Towards an Enumerative Geometry of the Moduli Space of Curves. Arithmetic and Geometry. Vol. II. Progress in Math., pp.271 - 328, 1983.

16. Harris J., Morrison J., Moduli of curves. GTM 187, Springer, Berlin-N.Y, 1998.

17. R. E. Moore. Interval Analysis. Prentice Hall, Englewood Cliffs, NJ, 1966.

18. G. Alefeld, J. Herzberger. Introduction to Interval Computations. Academic Press, NY, 1983.

19. Yu. I. Shokin. Interval’nij Analiz. Nauka. Seb. District. Novosibirsk, 1981 (in Russian).

20. Applications of Interval Computations (R. Baker Kearfott and Vladik Kreinovich (Eds.) Kluwer Academic Publlishers. 1996.

21. Scientific Computing, Validated Numerics, Interval Methods (Walter Kr‥amer and J‥urgen Wolff von Gudenberg (Eds.)) Kluwer Academic/Plenum Publlishers. NY. 2001.

22. N. M. Glazunov. Interval arithmetics for evaluation of real functions and its implementation on vector-pipeline computers (in Russian), Issues of Cybernetics (Voprosi Kibernetiki). Kernel Software for Supercomputers, Moscow. Acad. of Sci. USSR, P.91-101 (1990).


Review

For citations:


Glazunov N.M. ON A. V. MALYSHEV’S APPROACH TO MINKOWSKI’S CONJECTURE CONCERNING THE CRITICAL DETERMINANT OF THE REGION |x|p + |y|p < 1 for p > 1. Chebyshevskii Sbornik. 2016;17(4):185-193. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-4-185-193

Views: 796


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)