Preview

Chebyshevskii Sbornik

Advanced search

ON drl-SEMIGROUPS AND drl-SEMIRINGS

https://doi.org/10.22405/2226-8383-2016-17-4-167-179

Abstract

In the article drl-semirings are studied. The obtained results are true for drl-semigroups, because a drl-semigroup with zero multiplication is drl-semiring. This algebras are connected with the two problems: 1) there exists common abstraction which includes Boolean algebras and lattice ordered groups as special cases? (G. Birkhoff); 2) consider lattice ordered semirings (L. Fuchs). A possible construction obeying of the first problem is drl-semigroup, which was defined by K. L. N. Swamy in 1965. As a solution to the second problem, Rango Rao introduced the concept of l-semiring in 1981. We have proposed the name drl-semiring for this algebra. In the present paper the drl-semiring is the main object. Results of K. L. N. Swamy for drl-semigroups are extended and are improved in some case. It is known that any drl-semiring is the direct sum S = L(S) ⊕ R(S) of the positive to drl-semiring L(S) and l-ring R(S). We show the condition in which L(S) contains the least and greatest elements (theorem 2). The necessary and sufficient conditions of decomposition of drl-semiring to direct sum of l-ring and Brouwerian lattice (Boolean algebra) are founded at theorem 3 (resp. theorem 4). Theorems 5 an 6 characterize l-ring and cancellative drl-semiring by using symmetric difference. Finally, we proof that a congruence on drl-semiring is Bourne relation.

About the Author

O. V. Chermnykh
Vyatka State University
Russian Federation

Leading teacher of the Chair of Fundamental and Computer Mathematics



References

1. Birkhoff G. 1948 Lattice theory. Am. Math. Colloquium Publications.

2. L. Fuchs 1965, Partially ordered algebraic systems. M .: Mir — P. 342

3. Golan J. S. 1992, The theory of semirings with applications in mathematics and theoretical computer science. Longman scienificand tehnical. Harlow.

4. Rao P. R. 1981. ”Lattice ordered semirings” Math. Sem. Notes, Kobe Univ. Vol. 9. pp. 119–149.

5. Swamy K. L. N. 1965, ”Dually residuated lattice ordered semigroups”, Math. Ann. Vol. 159. pp. 105–114.

6. Swamy K. L. N. 1965, ”Dually residuated lattice ordered semigroups, II” Math. Ann. Vol. 160. pp. 64–71.

7. Swamy K. L. N. 1966, ”Dually residuated lattice ordered semigroups, III” Math. Ann. Vol. 167. pp. 71–74.

8. Ward M, Dilworth R. P. 1939, ”Residuated lattices” Trans. Am. Math. Soc., 45. pp. 335–354.

9. Vorozhcova T. A., Chermnyh O. V. 2014, ”Arifmeticheskie svojstva drl-polugrupp” Matematicheskij vestnik pedvuzov i universitetov Volgo-Vjatskogo regiona. Vyp 16. Kirov: Izd-vo OOO "Raduga-PRESS"pp.74–81.

10. Miklin A. V., Chermnyh V. V. 2014. ”O drlpolukol’cah” Matematicheskij vestnik pedvuzov i universitetov Volgo-Vjatskogo regiona. Vyp 16. Kirov: Izd-vo OOO "Raduga- PRESS"pp. 87– 95.

11. Kovar T. 1999 ”Two remarks on dually residuated lattice ordered semigroups” Math. Slovaka vol 49 no 1. pp. 17–18.


Review

For citations:


Chermnykh O.V. ON drl-SEMIGROUPS AND drl-SEMIRINGS. Chebyshevskii Sbornik. 2016;17(4):167-179. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-4-167-179

Views: 529


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)