Preview

Chebyshevskii Sbornik

Advanced search

THE MIXED JOINT FUNCTIONAL INDEPENDENCE OF THE RIEMANN ZETA- AND PERIODIC HURWITZ ZETA-FUNCTIONS

https://doi.org/10.22405/2226-8383-2016-17-4-57-64

Abstract

The functional independence of zeta-functions is an interesting nowadays problem. This problem comes back to D. Hilbert. In 1900, at the International Congress of Mathematicians in Paris, he conjectured that the Riemman zeta-function does not satisfy any algebraicdifferential equation. This conjecture was solved by A. Ostrowski. In 1975, S.M. Voronin proved the functional independence of the Riemann zeta-function. After that many mathematicians obtained the functional independence of certain zeta- and L-functions. In the present paper, the joint functional independence of a collection consisting of the Riemann zeta-function and several periodic Hurwitz zeta-functions with parameters algebraically independent over the field of rational numbers is obtained. Such type of functional independence is called as “mixed functional independence” since the Riemann zeta-function has Euler product expansion over primes while the periodic Hurwitz zeta-functions do not have Euler product.

About the Authors

R. Kaˇcinskait˙
Siauliai University
Lithuania

doctor of Physical Sciences (Mathematics), professor, Department of Mathematics, Faculty of Technology, Physical and Biomedical Sciences



S. Rapimbergait˙e
Siauliai University
Lithuania

master of Physical Sciences (Mathematics), Department of Mathematics, Faculty of Technology, Physical and Biomedical Sciences



References

1. H‥older O., 1887, "‥Uber die Eigenschaft der Gamafunktion keiner algebraischen Differentialgleichung zu genugen" , Math. Ann., Vol. 28, pp. 1–13.

2. Hilbert D., 1900, "Mathematische Probleme" , Nachr. Konigl. Ges. Wiss. Gottingen, Math.-Phys. Kl., pp. 253–297.

3. Ostrowski A., 1920, "‥Uber Dirichletsche reihen und algebraische Differentialgleichungen" , Math. Z., Vol. 8, pp. 241–298.

4. Postnikov A. G., 1949, "On the differential independence of Dirichlet series" , Dokl. Akad. Nauk SSSR, Vol. 66, No. 4, pp. 561–564 (in Russian).

5. Postnikov A. G., 1956, "Generalization of one of Hilbert’s problems" , Dokl. Akad. Nauk SSSR, Vol. 107 No. 4, pp. 512–515 (in Russian).

6. Voronin S. M., 1975, "On the functional independence of Dirichlet L-functions" , Acta Arith., Vol. 27, pp. 493–503 (in Russian).

7. Laurinˇcikas A., 1996, "Limit Theorems for the Riemann Zeta-Function" , Dordrecht: Kluwer.

8. Steuding J., 2007, "Value-Distribution of L-functions" , Lecture Notes in Math, Vol. 1877, Berlin etc.: Springer Verlag.

9. Mishou H., 2007, "The joint value-distribution of the Rieman zeta function and Hurwitz zeta functions" , Lith. Math. J., Vol. 47, pp. 32–47.

10. Kaˇcinskait˙e R. & Laurinˇcikas A., 2011, "The joint distribution of periodic zeta-functions" , Stud. Scien. Math. Hungarica, Vol. 48, No. 2, pp. 257–279.

11. Riemann B., 1859, "‥Uber die Anzahl der Primzahlen unterhalb einer gegebenen Gr‥osse" , Monatsber. Preuss Akad. Wiss. Berlin, pp. 671–680.

12. Javtokas A. & Laurinˇcikas A., 2006, "On the periodic Hurwitz zeta-function" , Hardy-Ramanujan J., Vol. 29, pp. 18–36.

13. Laurinˇcikas A., 2008, "Functional independence of periodic Hurwitz zeta functions" , Math. Notes, Vol. 83, No. 1, pp. 65–71 ≡ Mat. Zametki, Vol. 83, No. 1, pp. 69–78 (in Russian).

14. Genys J., Macaitien˙e R., Raˇckauskien˙e S. & ˇSiauˇci¯unas D., 2010, "A mixed joint universality theorem for zeta-functions" , Math. Model. Anal., Vol. 15, No. 4, pp. 431–446.

15. Laurinˇcikas A. & ˇSiauˇci¯unas D., 2012, "A mixed joint universality theorem for zeta-functions. III" , in: Analytic Probab. Methods Number Theory, J. Kubilius Memorial Volume, A. Laurin-ˇcikas et al. (eds.). Vilnius: TEV, pp. 185–195.

16. Poceviˇcien˙e V. & ˇSiauˇci¯unas D., 2014, "A mixed joint universality theorem for zeta-functions. II" , Math. Modell. and Analysis, Vol. 19, pp. 52–65.

17. Macaitien˙e R., 2015, "Mixed joint universality for L-functions from Selberg’s class and periodic Hurwitz zeta-functions" , Chebyshevskii Sb., Vol. 16, No. 1, pp. 219–231.


Review

For citations:


Kaˇcinskait˙ R., Rapimbergait˙e S. THE MIXED JOINT FUNCTIONAL INDEPENDENCE OF THE RIEMANN ZETA- AND PERIODIC HURWITZ ZETA-FUNCTIONS. Chebyshevskii Sbornik. 2016;17(4):57-64. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-4-57-64

Views: 582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)