Preview

Chebyshevskii Sbornik

Advanced search

ROMANOFF ADDITIVE THEOREM’S PROOF AND ITS ANALOGUES

https://doi.org/10.22405/2226-8383-2016-17-4-51-56

Abstract

In paper we describe the way N. P. Romanoff proved his additive theorem and sufficient conditions to obtain its analogues for sets with similar distribution and arithmetic. Also the example of set with similar distribution but with different arithmetic is given. We prove that the Romanoff theorem’s analogue for this set is incorrect.

About the Author

A. N. Vassilyev
Московский государственный университет имени М. В. Ломоносова, Казахстанский филиал
Kazakhstan


References

1. Romanoff, N. P. 1934, „ ¨Uber einige S¨atze der additiven Zahlentheorie“, Math. Ann., Vol. 57, pp. 668–678.

2. Brun, V. 1919, „Le crible d’Eratosthene et le theoreme de Goldbach“ C. R. Acad. Sci. Paris., Vol. 168, pp. 544–546.

3. Dubickas, A. 2013, „Sums of Primes and Quadratic Linear Recurrence Sequences“, Acta Mathematica Sinica, English Series, Vol. 29, pp. 2251–2260.

4. Erd¨os, P. 1951, „On some problems of Bellman and a theorem of Romanoff“, J. Chinese Math. Soc., pp. 409–421.

5. Enoch Lee, K. S. 2010, „On the sum of a prime and a Fibonacci number“, Int. J. Number Theory, Vol. 6, pp. 1669–1676.

6. Vasil’ev, A. N. 2014, „Rational trigonometric sums for Fibonacci sequences and an analogue of Romanoff’s theorem“, Doklady Mathematics, Vol. 89, pp. 349–350.

7. Ballot, C., Luca, F. 2013, „On the sumset of the primes and a linear recurrence“, Acta Arithmetica, Vol. 161, pp. 33–46.

8. Pomerance, C. 2015, „Divisors of the Middle Binomial Coefficient“, American Mathematical Monthly, Vol. 122, pp. 636–644.

9. Kummer E. 1852, „ ¨Uber die Erg¨anzungss¨atze zu den allgemeinen Reciprocit¨atsgesetzen“, Journal f¨ur die reine und angewandte Mathematik, Vol. 44, pp. 93–146.


Review

For citations:


Vassilyev A.N. ROMANOFF ADDITIVE THEOREM’S PROOF AND ITS ANALOGUES. Chebyshevskii Sbornik. 2016;17(4):51-56. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-4-51-56

Views: 563


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)