ON A METHOD FOR APPROXIMATE SOLUTION NONLINEAR HEAT CONDUCTION EQUATION
https://doi.org/10.22405/2226-8383-2016-17-4-11-22
Abstract
In this paper a one-dimensional non-stationary heat conduction problem, modeling the process of rapid local heating of the sample beam type on the lateral surface is considered. The character of heating is such that it is possible to allocate only a certain directionof the heat propagation. Temperature fields are determined by an approximate method based on the idea of the thermal front. The solution is sought in the form of a power series in the coordinate with coefficients depending on time. The boundaries of the front heat distribution as a function of time are determined by the condition of the integral satisfaction of the heat conduction equation. Considered temperature fields arise in many industrial processes, such as laser material processing, when due to large temperature gradients can arise thermal stresses, leading to microcracking inner layers or the destruction of structural elements. Analytical view of the heat conduction problem’s solution allows to obtain analytical expressions for the thermal stresses and further facilitates the results analysis. The paper presents the solution of problems with boundary conditions of the first and second kinds for two monotonic and one non-monotonic dependencies of the thermal conductivity coefficient on temperature. The approximate solution and the exact solution of the nonstationary linear problem are compared and shows the suitability of the method for future use.
References
1. Barenblatt, G. I. 1954, ”On some approximate methods in the theory of one- dimensional nonstationary filtration in the elastic drive regime”, Izv. AN SSSR, OTN, no. 9, pp. 35—49.
2. Bautin, S. P. 2003, ”Analiticheskaya teplovaya volna”, [Analytical heat wave], Fizmatlit, Moscow, 88p.
3. Baharev, M. S., Mirkin, L. I., Shesterikov, S. A. & Yumasheva M. A. 1988, ”Struktura i prochnost’ materialov pri lazernyh vozdejstviyah”, [Structure and strength of materials with the laser action], Izd-vo Mosk. un-ta, Moscow 224p.
4. Bednova, V. B. 2013, ”An approximate method for determining the temperature field with rapid local heating of the sample”, Trudy konferencii-konkursa molodyh uchenyh NII mekhaniki MGU imeni M.V.Lomonosova, pp. 73–76.
5. Boley, B. A. & Weiner J. H. 1964, ”Teoriya temperaturnyh napryazhenij”, [Theory of Thermal Stresses], Mir, Moscow, 517p.
6. Galaktionov, V. A., Kurdyumov, S. P., Mihajlov, A. P. & Samarskij, A. A. 1981, ”Heat localization in nonlinear media”, Differencial’nye uravneniya, Vol. XVII, no. 10, pp. 1826–1841.
7. Kalashnikov, A. S. 1972, ”On the equations of non-stationary filtration type with infinite speed of propagation of disturbances”, Vestnik Moskovskogo universiteta, no. 6, pp. 45–49.
8. Carslaw, H.S. & Jaeger, J. C. 1964, ”Teploprovodnost’ tverdyh tel”, [Conduction of Heat in Solids], Nauka, Moscow, 488p.
9. Lokoshchenko, A. M. 2000, ”Polzuchest’ i dlitel’naya prochnost’ metallov v agressivnyh sredah”, [The creep and the long-term strength of metals in the aggressive media], Izd-vo Mosk. un-ta, Moscow, 178p.
10. Lykov, A. V. 1967, ”Teoriya teploprovodnosti”, [Theory of heat conduction], Vysshaya shkola, Moscow, 599p.
11. Olejnik, O. A., Kalashnikov, A. S. & Chzhou Yuj-Lin’ 1958, ”The Cauchy problem and boundary value problems for equations of non-stationary filtration”, Izv. AN SSSR, Seriya matematicheskaya, Vol. 22, pp. 667–704.
12. Parcus, H. 1963, ”Neustanovivshiesya temperaturnye napryazheniya”, [Non-stationary thermal stresses], Gosudarstvennoe izd-vo fiziko-matematicheskoj literatury, Moscow, 252p
13. Timoshenko, S. P. & Goodier, J. 1975, ”Teoriya uprugosti”, [Theory of Elasticity], Nauka, Moscow, 576p.
14. Shesterikov, S. A. & Yumasheva, M. A. 1973, ”An approximate method for estimating nonstationary temperature fields”, Institut mekhaniki MGU. Nauchnye trudy. Deformirovanie i razrushenie tverdyh tel. no. 23, Izd-vo Mosk. un-ta, Moscow, pp. 15—20.
15. Yumashev, M. V., Bednova, V. B., Vergazov, M. M. & Yumasheva, M. A. 2014, ”The destruction of brittle materials under local effect on the surface energy flow”, Mashinostroenie i inzhenernoe obrazovanie, no. 4, pp. 52—58.
16. Yumashev, M. V., Yumasheva, M. A. & Krasnova, P. A. 2010, ”Modeling of the body heating process with intensive exposure to heat to the surface”, Vestnik Moskovskogo universiteta, no. 4, pp. 44—54.
Review
For citations:
Bednova V.B. ON A METHOD FOR APPROXIMATE SOLUTION NONLINEAR HEAT CONDUCTION EQUATION. Chebyshevskii Sbornik. 2016;17(4):11-22. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-4-11-22