ON AUTOMORPHISMS OF STRONGLY REGULAR GRAPH WITH THE PARAMETRS (1276,50,0,2)
https://doi.org/10.22405/2226-8383-2016-17-3-178-185
Abstract
Let \(\Gamma\) be a strongly regular graph with parameters \((v,k,0,2)\). Then \(k=u^2+1\), \(v=(u^4+3u^2+4)/2\)
and \(u \equiv 1, 2, 3(mod 4)\). If \(u=1\), then \(\Gamma\) has parametrs \((4,2,0,2)\) --- tetragonal graph. If \(u=2\), then
\(\Gamma\) has parametrs \((15,5,0,2)\) --- Clebsch graph. If \(u=3\), then \(\Gamma\) has parametrs \((56,10,0,2)\) --- Gewirtz graph.
If \(u=5\) then hypothetical strongly regular graph\(\Gamma\) has parametrs \((352,26,0,2)\) [4]. If \(u=5\) then hypothetical
strongly regular graph\(\Gamma\) has parametrs \((704,37,0,2)\) [5].
Let \(u=7\), then \(\Gamma\) has parametrs \((1276,50,0,2)\). Let \(G\) be the automorphism group of a hypothetical strongly regular
graph with parameters \((1276, 50, 0, 2)\). Possible orders are found and the structure of fixed-point subgraphs
is determined for elements of prime order in \(G\). With the use of theory of characters of finite groups we find the
possible orders and the structures of subgraphs of the fixed points of automorphisms of the graph with parameters
\((1276,50,0,2)\). It proved that if the graph with parametrs (1276,50,0,2) exist, its automorphism group divides
\(2^l\cdot 3\cdot 5^m\cdot 7\cdot 11\cdot 29\). In particulary, \(G\) --- solvable group.
About the Author
V. V. NosovRussian Federation
Candidate of Physico-Mathematical Sciences, Docent, Associate Professor at the Department of Algebra and Discrete Mathematics
References
1. Makhnev А. А., Paduchikh D.V. 2001, “Automorphisms of Aschbacher Graphs“, Algebra and logic, vol. 40, no. 2, pp. 69–74.
2. Brouwer A. E., Cohen A.M., Neumaier A. 1989. Distance-regular graphs. Springer-Verlag. Berlin.
3. Makhnev А. А., Minakova I.М. 2004. “On automorphisms of strongly regular graphs with the parameters
4. Makhnev А. А.,Nosov V.V. 2004. “On automorphisms of strongly regular graphs with
5. Nosov V. V. 2005. “On automorphisms graph with the parameters (704, 37, 0, 2)“, Problemy teorticheskoj i prikladnoj matematiki: trudy 36th Regionalnoy molodejnoy conferencii. Ekaterinburg, UB of RAS. pp. 55–60.
6. Brouwer A. E., Haemers W.H. 1993. “The Gewirtz graph: an exercize in the theory of graph spectra“, Europ. J. Comb. vol. 14. pp. 397–407.
7. Willbrink H. A., Brouwer A. E. A 1983. “(57, 14, 1) strongly regular graph does not exist“, Proc. Kon. Nederl. Akad. Ser. A. Vol. 45, no 1. pp. 117–121.
8. Cameron P. 1999. Permutation Groups, London Math. Soc. Student Texts 45, Cambridge Univ. Press.
9. Eiichi Bannai, Tatsuro Ito. 1984 Algebraic combinatorics I: Association schemes. Menlo Park, CA: The Benjamin/Cummings Publishing Co., Inc.
10. Cameron P., Van Lint J. 1981 Designs, Graphs, Codes and their Links. London Math. Soc. Student Texts 22. Cambr. Univ. Press. 240 pp.
11. Higman D. G. 1964. “Finite permutation groups of rank 3“, Math. Z., vol. 86, pp. 145–156.
12. Higman D. G. 1966. “Primitive rank 3 groups with a prime subdegree“, Math. Z. vol. 91, pp. 70–86.
13. Higman D. G. 1967. “Intersection matricies for finite permutation groups“, J. Algebra, vol. 6, pp. 22–42.
14. Higman D. G. 1968. “On finite affine planes of rank 3“, Math. Z. vol. 104, p. 147–149.
15. Higman D. G. 1970. “A survey of some questions and resalts about rank 3 permutation groups“. Actes, Cjngres Int. Math. Rome, vol. 1, p. 361–365.
16. Higman D. G. 1970 “Characterization of families of rank 3 permutation groups by the subdegrees I, II“, Arth. Math., vol. 21, p. 151 — 156; 353–361.
17. Nakagawa N. 2001. “On strongly regular graphs with parameters (
Review
For citations:
Nosov V.V. ON AUTOMORPHISMS OF STRONGLY REGULAR GRAPH WITH THE PARAMETRS (1276,50,0,2). Chebyshevskii Sbornik. 2016;17(3):178-185. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-3-178-185