Preview

Chebyshevskii Sbornik

Advanced search

GENERALIZED WAGNER’S CURVATURE TENSOR OF ALMOST CONTACT METRIC SPACES

https://doi.org/10.22405/2226-8383-2016-17-3-53-63

Abstract

On a manifold with an almost contact metric structure \((M, \vec{\xi}, \eta, \varphi,g)\) and an endomorphism \(N:D\rightarrow D\) the notion of an N-prolonged connection \(\nabla^N=(\nabla,N)\), where \(\nabla\) is an interior connection, is introduced. An endomorphism \(N:D\rightarrow D\) found such that the curvature tensor of the N-prolonged connection coincides with the Wagner curvature tensor. It is proven that the curvature tensor of the interior connection equals zero if and only if on the manifold \(M\) exists an atlas of adapted charts for that the coefficients of the interior connection are zero. A one-to-one correspondence between the set of N-prolonged and the set of N-connections is constructed. It is shown that the class of N-connections includes the Tanaka-Webster Schouten-van Kampen  connections. An equality expressing the N-connection in the terms of the Levi-Civita connection is obtained. The properties of the curvature tensor of the N-connection are investigated; this curvature tensor is called in the paper the generalized Wagner curvature tensor. It is shown in particular that if the generalized Wagner curvature tensor in the case of a contact metric space is zero, then there exists a constant admissible vector field oriented in any direction. It is shown that the generalized Wagner curvature tensor may be zero only in the case of the zero endomorphism \(N:D\rightarrow D\).

About the Author

S. V. Galaev
Saratov State University
Russian Federation


References

1. Vagner V. V. 1941, "The geometry of an (

2. Vagner V. V. 1941, "Geometric interpretation of the motion of nonholonomic dynamical systems" , Trudy Sem. Vektor. Tenzor. Analiza, Moscow Univ. Press, Moscow, issue 5, pp. 301-327 (Russian).

3. Tanaka N. 1976, "On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections" , Japan J. Math. № 20, pp. 131–190.

4. Tanno S. 1989, "Variational problems on contact Riemannian manifolds", Trans. Amer. Math. Soc., vol. 314, № 1. pp. 349–379.

5. Webster S. M. 1978, "Pseudo-Hermitian structures on a real hypersurface" , J. Diff. Geom. № 13. pp. 25–41.

6. Schouten J. 1930, "Zur Einbettungs-und Krummungstheorie nichtholonomer", Gebilde. Math. Ann. № 103 pp. 752–783.

7. Bejancu A. 2010, "K¨ahler contact distributions" , Journal of Geometry and Physics, vol. 60, issue 12. pp. 1958–1967.

8. Bukusheva A. V. 2015, "On geometry of the contact metric spaces with

9. Galaev S. V. 2012, "The intrinsic geometry of almost contact metric manifolds", Izvestiya Saratovskogo un-ta. Seriya «Matematika. Informatika. Mekhanika», vol. 12, issue 1, pp. 16–22 (Russian).

10. Bukusheva A. V., Galaev S. V. 2013, "Connections on distributions and geodesic sprays", Izvestija vuzov. Mat. (Russian Mathematics (Izvestija VUZ. Mathematika)), № 4, pp. 10-18 (Russian).

11. Galaev S. V. 2014, "Almost contact K¨ahler manifolds of constant holomorphic sectional curvature" , Izvestiya vuzov. Mat. (Russian Mathematics (Izvestiya VUZ. Mathematika)), № 8. pp. 42-52 (Russian).

12. Galaev S. V. 2015, "Almost contact metric structure determined by N-extended connection", Yakutian Mathematical Journal, vol. 22, № 1, pp. 25-34 (Russian)

13. Galaev S. V. 2015, "Characteristic classes Maslov Legendre submanifolds of almost contact K¨ahler spaces Differential geometry of manifolds of figures, Izd-vo BFU im. I. Kanta, Kaliningrad, issue 46. pp. 68-75 (Russian).

14. Krym V.R., Petrov N.N. 2008, "The curvature tensor and the Einstein equations for a fourdimensional nonholonomic distribution" , Vestnik St. Petersburgskogo Un-ta. Math., vol. 41, № 3, pp. 256-265.

15. Bejancu A., C


Review

For citations:


Galaev S.V. GENERALIZED WAGNER’S CURVATURE TENSOR OF ALMOST CONTACT METRIC SPACES. Chebyshevskii Sbornik. 2016;17(3):53-63. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-3-53-63

Views: 658


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)