ABOUT NUMERICAL REALIZATION OF THE METHOD OF SUBSEQUENT PARAMETERS PERTURBATION FOR CALCULATING A STRESS-STRAIN STATE OF SHALLOW SHELLS
https://doi.org/10.22405/2226-8383-2016-17-3-28-37
Abstract
The paper investigates a class of nonlinear dynamic shell models, which non-linearity reflects Gaussian curvature of a surface; in the case when loads are smaller than critical ones in every point in time. Moreover, every unknown function from the system of equations, can be uniquely identified through the deflection function. Domain that is defined by the middle shell surface is bounded with piecewise smooth boundary. Such models as Kirchhoff-Love model (that specify Tymoshenko model, defined both in transferences and mixed forma), a model that reflects the bond between deformation fields and temperature and others can represent that equation class.
The method of subsequent parameters perturbation developed by professor V. Petrov in 1970s is used as a numerical method for such models. This method brings the solution of nonlinear equations to the solution of a sequence of linear equations. The paper discusses problems connected with the realization of this method. It is known, that method of V. Petrov converges slowly. That is why questions of convergence improvement are examined. The usage of variation methods for solving systems of linear equations requires defined convergence speed and orthogonal system of functions that satisfies the boundary conditions. These questions are investigated in the paper as well.
About the Authors
L. V. BessonovRussian Federation
T. A. Kuznetsova
Russian Federation
S. V. Chumakova
Russian Federation
References
1. Petrov V. V., 1975, Metod posledovatel’nykh nagruzhenii v nelineinoi teorii plastin i obolochek. [Successive loading method in nonlinear theory of plates and shells] Saratov: Izd-vo Sarat. un-ta. (in Russian)
2. Kuznetsov V. N., 2000, Metod posledovatel’nogo vozmushcheniia parametrov v prilozhenii k raschetu dinamicheskoi ustoichivosti tonkostennykh obolochechnykh konstruktsii [Method of sequential perturbation of parameters applied to the simulation of dynamic stability thin-walled shell structures] : dis. . . . d-ra tekhn. nauk. Saratov. (in Russian)
3. Petrov V. V., Ovchinnikov I. G., Inozemtsev V. K., 1988, Deformirovanie elementov konstruktsii iz nelineinogo ravnomodul’nogo neodnorodnogo materiala. [The deformation of structural elements of the same–module non-linear inhomogeneous material] Saratov : Izd-vo Sarat. un-ta. (in Russian)
4. Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., 2010, O chislennoi realizatsii metoda posledovatel’nykh nagruzhenii pri raschete geometricheski nelineinykh obolochek [About numerical realization of the successive loading method for calculating the geometrically nonlinear shells], Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam: mezhvuz. sb. nauch. tr. Saratov : Izd-vo Sarat. un-ta. Vyp. 6. S. 27–43. (in Russian)
5. Kuznetsov V. N., Kuznetsova T. A., Chumakova S. V., 2003, Operatornye metody v nelineinoi dinamike [Operator methods in nonlinear dynamics], Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam : mezhvuz. sb. nauch. tr. Saratov : Izd-vo Sarat. un-ta. Vyp. 1. S. 70–80. (in Russian)
6. Chumakova S. V., Pshenov D. A., Shabanov L. E., 2002, K voprosu uluchsheniia skhodimosti metoda V. V. Petrova – metoda posledovatel’nogo vozmushcheniia parametrov [To the problem of improving the convergence of the Petrovs method – the method of successive perturbation of parameters], Problemy prochnosti elementov konstruktsii pod deistviem nagruzok i rabochikh sred: Mezhvuz. nauch. sb. Saratov: Izd-vo SGTU. S. 61–64. (in Russian)
7. Mikhlin S. G., 1967, Variatsionnye metody v matematicheskoi fizike. [Variational methods in mathematical physics] M. : Izdatel’stvo tekhniko-teoreticheskoi literatury. (in Russian)
8. Kuznetsov E. B., Shalashilin V. I. 1994, Zadacha Koshi dlia mekhanicheskikh sistem s konechnym chislom stepenei svobody kak zadacha prodolzheniia po nailuchshemu parametru [The Cauchy problem for mechanical systems with a finite number of degrees of freedom as the problem of continuing on the best parameter], PMM. T.58. Vyp.6. S. 14–21. (in Russian)
9. Lions Zh. L., 1972, Nekotorye metody resheniia nelineinykh kraevykh zadach. [Methods of solving nonlinear boundary value problems] M. : Mir. 104 s. (in Russian)
10. Bessonov L. V., 2015, Chislennaia realizatsiia metoda posledovatel’nogo vozmushcheniia parametrov pri raschete napriazhenno-deformirovannogo sostoianiia obolochechnoi konstruktsii v sluchae zhestkogo zakrepleniia kraev obolochki [Numerical Implementation of Method of Subsequent Perturbation of Parameters for Computation of Stress-Strain State of a Shell Rigidly Fixed on the Boundaries], Izv. Sarat. un-ta Nov. ser. Ser. Matematika. Mekhanika. Informatika. T.15. vyp.1. P. 74–79. (in Russian) DOI 10.18500/1816-9791-2015-15-1-74-79
11. Bessonov L. V., 2012, Chislennaia realizatsiia algoritma spektral’nogo kriteriia lokal’noi poteri ustoichivosti obolochechnoi konstruktsii [The numerical implementation of the algorithm of spectral criteria for the local buckling of the shell structure], Issledovaniia po algebre, teorii chisel, funktsional’nomu analizu i smezhnym voprosam : mezhvuz. sb. nauch. tr. Saratov: Izd-vo Sarat. un-ta. Vyp. 7. S. 3–9. (in Russian)
12. Bessonov L. V., 2015, Chislennaia realizatsiia spektral’nogo kriteriia opredeleniia tochek lokal’noi poteri ustoichivosti obolochechnoi konstruktsii [Numerical realization of the spectral criterion for determining the points of local buckling of the shell structure], Materialy XIX Mezhdunarodnoi konferentsii po vychislitel’noi mekhanike i sovremennym prikladnym programmnym sistemam (VMSPPS’2015), Moskva. S. 223–225. (in Russian)
13. Bessonov L. V., 2015, Numerical Realization of The Method of Subsequent parameters Perturbation for Calculating a Stress-Strain State of The Shell, Applied Mechanics and Materials. T. 799–800. P. 656–659.
14. Bessonov L. V., 2015, Ob operatornom podhode pri raschete napryagenno-deformirovannogo sostoyaniya obolochechnyh konstrukciy, ХI Vserossiiskiy s’ezd po fundamentalnym problemam teoreticheskoy i prikladnoy mehaniki. Kazan. S. 467–469. (in Russian)
15. Bessonov L. V., 2013, Geometriceskie parametry i tochki localnoy poteri ustoychivosti cilindricheskoy obolochki, Studencheskaya nauka: perekrestki teorii i praktiki. Materialy I Vnutrivuzovskoi nauchno-prakticheskoy konferencii studentov i aspirantov. Saratov. S. 20–23 (in Russian)
Review
For citations:
Bessonov L.V., Kuznetsova T.A., Chumakova S.V. ABOUT NUMERICAL REALIZATION OF THE METHOD OF SUBSEQUENT PARAMETERS PERTURBATION FOR CALCULATING A STRESS-STRAIN STATE OF SHALLOW SHELLS. Chebyshevskii Sbornik. 2016;17(3):28-37. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-3-28-37