Preview

Chebyshevskii Sbornik

Advanced search

ON NORMALIZERS IN SOME COXETER GROUPS

https://doi.org/10.22405/2226-8383-2016-17-2-113-127

Abstract

Let G be a finitely generated Coxeter group with presentation G =< a1, . . . , an; (aiaj ) mij = 1, i, j = 1, n >, where mij — are the elements of the symmetric Coxeter matrix: ∀i, j ∈ 1, n, mii = 1, mij ≥ 2, i 6= j.

If mij ≥ 3(mij > 3), i 6= j, then G is a Coxeter group of large (extra-large) type. These groups introduced by K. Appel and P. Schupp.

If the group G corresponds to a finite tree-graph Γ such that if the vertices of some edge e of the graph Γ correspond to generators ai , aj , then the edge e corresponds to the ratio of the species (aiaj ) mij = 1, then G is a Coxeter group with a tree-structure.

Coxeter groups with a tree-structure introduced by V. N. Bezverkhnii, algorithmic problems in them was considered by V. N. Bezverkhnii and O. V. Inchenko.

The group G can be represented as tree product 2-generated of Coxeter groups, amalgamated by cyclic subgroups. Thus from the graph Γ of G will move to the graph Γ in the following way: the vertices of the graph Γ we will put in line Coxeter group on two generators Gij =< ai , aj ; a 2 i = a 2 j = 1,(aiaj ) mij = 1 > and Gjk =< aj , ak; a 2 j = a 2 k = 1,(ajak) mjk = 1 >, to every edge e joining the vertices corresponding to Gij and Gjk is a cyclic subgroup < aj ; a 2 j = 1 >.

In this paper we prove the following theorem: normalizer of finitely generated subgroup of Coxeter group with tree-structure G = Gij∗Gjk, Gij =< ai , aj ; a 2 i = a 2 j = 1,(aiaj ) mij = 1 >, Gjk =< aj , ak; a 2 j = a 2 k = 1,(ajak) mjk = 1 > finitely generated and exist algorithm for generating. 

About the Author

I. V. Dobrynina

Russian Federation
Tula


References

1. Bezverhnii, V. N. & Dobrynina, I. V. 2014, “On freedom problem in Coxeter groups with treestructure“, Izvestija TulGU. Estestven nauki, vol. 1, no. 1, pp. 5-14.

2. Coxeter, H. S. M., 1934, “Discrete groups generated by reflections“, Ann. Math., vol. 35, pp. 588-621.

3. Appel, K., Schupp, P., 1983, “Artins groups and infnite Coxter groups“, Ivent. Math., vol. 72. pp. 201-220.

4. Lysenok, I. G., 1990, “On some algorithmic properties of hyperbolic groups“, Math. USSR-Izv., vol. 35, no. 1, pp. 145-163.

5. Bezverhnii, V. N. & Dobrynina, I. V., 2008, “A solution of the power conjugacy problem for words in the Coxeter groups of extra large type“, Diskr. Mat., vol. 20, no. 3, pp. 101–110.

6. Bezverhnii, V. N. & Dobrynina, I. V., 2003, “Solution of the conjugacy problem for words in Coxeter groups of large type“, Chebyshevskii Sb., vol. 4, no. 1, pp. 10-33.

7. Bezverhnii, V. N. & Dobrynina, I. V., 2005, “Solution of the generalized conjugacy problem for words in Coxeter groups of large type“, Diskr. Mat., vol. 17, no. 3, pp. 123–145.

8. Bezverkhnii, V. N. & Inchenko O. V., 2010, “Conjugacy problem of subgroups in finitely generated Coxeter groups with tree structure“, Chebyshevskii Sb., vol. 11, no. 3, pp. 32-56.

9. Kurosh, A. G., 2011, “Theory of groups“, Fizmatlit, Moscow.

10. Magnus, V., Karras, А.& Soliter, D., 1974, “Combinatory theory of groups“, Nauka, Moscow.

11. Bezverhnii, V. N. & Dobrynina, I. V., 2003, “Normalizers of Some Classes of Subgroups in Braid Groups“, Mat. Zametki, vol. 74, no. 1, pp. 19–31.

12. Bezverkhnii, V. N., 1998, “On the intersection subgroups HNN-groups“, Fundam. Prikl. Mat., vol. 4, no. 1, pp. 199-222.

13. Bezverkhnii, V. N. & Inchenko, O. V., 2010, “The centralizer of elements of finite order of a finitely generated Coxeter group with a tree structure“, Chebyshevskii Sb., vol. 9, no. 1, pp. 17-27.

14. Bezverkhnyaya, I. S., 1983, “On root closure of subgroups of amalgamated product of groups“, Algorithmic problems of theory of groups and semigroups, pp. 81-112.

15. Inchenko, O. V., 2016, “About the problem of intersection of the adjacency classes of finitely generated subgroups of Coxeter’s group with tree structure“, Chebyshevskii Sb., vol. 17, no. 2, pp. .

16. Lindon, Р. & Shupp, P., 1980, “Combinatory theory of groups“, World, Moscow.

17. Bezverkhnyaya, I. S., 1981, “On conjugacy of finite sets of subgroups in free product of groups“, Algorithmic problems of theory of groups and semigroups, pp. 102-116.


Review

For citations:


Dobrynina I.V. ON NORMALIZERS IN SOME COXETER GROUPS. Chebyshevskii Sbornik. 2016;17(2):113-127. (In Russ.) https://doi.org/10.22405/2226-8383-2016-17-2-113-127

Views: 499


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)