Preview

Chebyshevskii Sbornik

Advanced search

ALGEBRAIC INDEPENDENCE OF CERTAIN ALMOST POLYADIC SERIES

https://doi.org/10.22405/2226-8383-2015-16-3-339-354

Abstract

We study the arithmetic properties of almost polyadic numbers ∑∞ n=1 ai (ai + bi). . .(ai + (n − 1) bi), i = 1, ..., m, where the numbers ai , bi ∈ Z, (ai , bi) = 1.

About the Author

V. Yu. Matveev

Russian Federation


References

1. Chirskii, V. G. 2014, ”The arithmetic properties of polyadic series with periodic coefficients.”, Dokl. Akad. Nauk, vol. 439, № 6, pp. 677 – 679. (Russian)

2. Bertrand, D., Chirskii, V. G. & Yebbou, J. 2004, ”Effective estimates for global relations on Euler-type series”, Ann. Fac. Sci. Toulouse Math., vol. (6) 13, № 2, pp. 241 – 260.

3. Chirskii, V. G. 2015, "The arithmetic properties of polyadic integers" , Chebyshevskii Sb., vol. 16, no. 1(53), pp. 254 – 264. (Russian)

4. Shidlovskii, A. B. 1987, "Transtsendentnye chisla." [Transcendental numbers] “Nauka”, Moscow, 448 pp. (Russian)

5. Salihov, V. H. 1973, "The algebraic independence of the values of E-functions that satisfy first order linear differential equations" , Mat. Zametki, vol. 13, № 1, pp. 29—40. (Russian)

6. Chirskii, V. G. 1990, "Global relations" , Mat. Zametki, vol. 48, no. 2, pp. 123– 127, 160 (Russian); translation in Math. Notes, vol. 48, no. 1-2, pp. 795–798.

7. Nesterenko, Yu. V. 1994, "Pade-Hermite approximants of generalized hypergeometric functions" , Mat. Sb. vol. 185, no. 10, pp. 39–72. (Russian); translation in Russian Acad. Sci. Sb. Math., vol. 83 (1995), no. 1, pp. 189–219.

8. Chirskii, V. G. 2015, "On the arithmetic properties of Euler’s series" , Vestnik Moskov. Univ. Ser. I Mat. Mekh. № 1, pp. 59–61. (Russian)

9. Postnikov, A. G. 1971, "Vvedenie v analiticheskuyu teoriyu chisel" , [Introduction to analytic number theory] Izdat. “Nauka”, Moscow, 416 pp. (Russian)

10. Pontryagin, L. S. 1984, "Nepreryvnye gruppy" , [Continuous groups] Fourth edition. “Nauka”, Moscow, 520 pp. (Russian)

11. Novoselov, E. V. 1960, "The topological theory of divisibility of integers" , Scientists. Rec. Elabuzh. state. ped. Inst. № 3, pp. 3–23. (Russian)

12. Chirskii, V. G. & Shakirov, R. F. 2013, "On the representation of positive integers using a number system of several bases" , Chebyshevskii Sb., vol. 14, no. 1(45), 86–93. (Russian)

13. Dimitrov, V. S., Jullien, G. A. & Miller, W. C. 1998, "An Algorithm for Modular Exponentiation" , Inform. Process. Lett., vol. 66, no. 3, pp. 155–159.

14. Matveev, V. Yu. & Chirskii, V. G. 2013, "On series of product by members of the arithmetic progression" , Teacher XXI Century, № 4, part. 2. pp. 249–254. (Russian)

15. Matveev, V. Yu. 2013, The values of a certain series of points in polyadic, closely approximated the natural numbers // Teacher XXI Century, № 4, part. 2. pp. 255–259. (Russian)


Review

For citations:


Matveev V.Yu. ALGEBRAIC INDEPENDENCE OF CERTAIN ALMOST POLYADIC SERIES. Chebyshevskii Sbornik. 2015;16(3):339-354. (In Russ.) https://doi.org/10.22405/2226-8383-2015-16-3-339-354

Views: 564


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)