Preview

Chebyshevskii Sbornik

Advanced search

On the Gromov – Hausdorff distance between the cloud of bounded metric spaces and a cloud with nontrivial stabilizer

https://doi.org/10.22405/2226-8383-2025-26-2-186-197

Abstract

The paper studies the class of all metric spaces considered up to zero Gromov – Hausdorff distance between them. In this class, we examine clouds — classes of spaces situated at finite Gromov – Hausdorff distances from a reference space. The paper proves that all clouds are
proper classes. The Gromov – Hausdorff distance is defined for clouds analogous to the case of metric spaces. The paper shows that under certain limitations the distance between the cloud of bounded metric spaces and a cloud with a nontrivial stabilizer is finite. In particular, the distance between the cloud of bounded metric spaces and the cloud containing the real line is calculated.

About the Author

Boris Arkadyevich Nesterov
Lomonosov Moscow State University
Russian Federation


References

1. Edwards, D., 1975, “The Structure of Superspace”, in Studies in Topology, eds. Stavrakas, N.M., Allen, K.R., New York: Academic Press.

2. Gromov, M., 1981, Structures m´etriques pour les vari´et´es riemanniennes, eds. Lafontaine, J., Pansu, P., Paris: CEDIC.

3. Gromov, M., 1999, Metric structures for Riemannian and non-Riemannian spaces, Boston: Birkh¨auser. ISBN 0-8176-3898-9.

4. M´emoli, F., Sapiro, G., 2004, “Comparing point clouds”, in Proceedings of the 2004 Eurographics/ ACM SIGGRAPH symposium on Geometry processing, New York: ACM, pp. 32-40. DOI: 10.1145/1057432.1057436.

5. Sukkar, F., Wakulicz, J., Lee, K.M.B., Zhi, W., Fitch, R., 2024, “Multi-query Robotic Manipulator Task Sequencing with Gromov – Hausdorff Approximations”, ArXiv e-prints, arXiv:2209.04800 [cs.RO].

6. M´emoli, F., 2008, “Gromov – Hausdorff distances in Euclidean spaces”, in 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage: IEEE, pp. 1-8.

7. Bogatyy, S.A., Tuzhilin, A.A., 2021, “Gromov – Hausdorff class: its completeness and cloud geometry”, ArXiv e-prints, arXiv:2110.06101 [math.MG].

8. von Neumann, J., 1925, “Eine Axiomatisierung der Mengenlehre”, Journal f¨ur die Reine und Angewandte Mathematik, vol. 154, pp. 219-240.

9. Bernays, P., 1937, “A System of Axiomatic Set Theory - Part I”, The Journal of Symbolic Logic, vol. 2, no. 1, pp. 65-77. DOI: 10.2307/2268862.

10. G¨odel, K., 1940, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory, Princeton: Princeton University Press. ISBN 978-0-691-07927-1.

11. Borzov, S.I., Ivanov, A.O., Tuzhilin, A.A., 2020, “Extendability of Metric Segments in Gromov – Hausdorff Distance”, ArXiv e-prints, arXiv:2009.00458 [math.MG].

12. Bogataya, S.I., Bogatyy, S.A., Redkozubov, V.V., Tuzhilin, A.A., 2022, “Clouds in Gromov – Hausdorff Class: their completeness and centers”, ArXiv e-prints, arXiv:2202.07337 [math.MG].

13. Burago, D., Burago, Y.D., Ivanov, S.O., 2001, A Course in Metric Geometry, Providence: American Mathematical Society.

14. Bogataya, S.I., Bogatyy, S.A., 2023, “Isometric Cloud Stabilizer”, Topology and its Applications, vol. 329, pp. 108-125.

15. Levy, A., 1979, Basic Set Theory, Berlin: Springer-Verlag.


Review

For citations:


Nesterov B.A. On the Gromov – Hausdorff distance between the cloud of bounded metric spaces and a cloud with nontrivial stabilizer. Chebyshevskii Sbornik. 2025;26(2):186-197. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-2-186-197

Views: 11


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)