Bifurcations of magnetic geodesic flows on toric surfaces of revolution
https://doi.org/10.22405/2226-8383-2025-26-2-125-140
Abstract
We study magnetic geodesic flows invariant under rotations on the 2-torus. The dynamical system is given by a generic pair of 2𝜋-periodic functions (𝑓, Λ), where the function Λ takes values in a circle if the magnetic field is not exact. Topology of the Liouville fibration of
the given integrable system near its singular orbits and singular fibers is decribed. Types of these singularities are computed. Topology of the Liouville fibration on regular 3-dimensional isoenergy manifolds is described by computing the Fomenko-Zieschang invariant. It is shown that Liouville fibrations for geodesic flow and non-exact magnetic geodesic flow on any isoenergy manifold have different topology. All possible bifurcation diagrams of the momentum maps of such integrable systems are described.
About the Authors
Ivan Fedorovich KobtsevRussian Federation
Elena Alexandrovna Kudryavtseva
Russian Federation
doctor of physical and mathematical sciences
References
1. Bolsinov, A. V. & Fomenko, A. T. 2004, Integrable Hamiltonian systems: geometry, topology,
2. classification, Chapman & Hall /CRC, Boca Raton, London, N.Y., Washington.
3. Kantonistova, E. O. 2016, “Topological classification of integrable Hamiltonian systems in a
4. potential field on surfaces of revolution”, Sb. Math., vol. 207, no. 3, pp. 358–399.
5. Timonina, D. S. 2018, “Liouville classification of integrable geodesic flows in a potential field on
6. two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., vol. 209,
7. no. 11, pp. 1644–1676.
8. Antonov, E. I. & Kozlov, I. K. 2020, “Liouville classification of integrable geodesic flows on a
9. projective plane in potential field”, Chebyshevskii sbornik, vol. 21, no. 2, pp. 10–25.
10. Kozlov, I. & Oshemkov, A. 2017, “Integrable systems with linear periodic integral for the Lie
11. algebra 𝑒(3)”, Lobachevskii J. Math., vol. 38, pp. 1014–1026. https://doi.org/10.1134/
12. S1995080217060063
13. Kudryavtseva, E. A. & Oshemkov, A. A. 2020, “Bifurcations of integrable mechanival systems
14. with magnetic field on surfaces of revolution”, Chebyshevskii sbornik, vol. 21, no. 2, pp. 244–265.
15. Fomenko, A. T. 1987, “The topology of surfaces of constant energy in integrable Hamiltonian
16. systems, and obstructions to integrability”, Math. USSR-Izv., vol. 29, no. 3, pp. 629–658.
17. Fomenko, A. T. 1986. “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl.,
18. vol. 33, no. 2, pp. 502–506.
19. Kobtsev, I. F. & Kudryavtseva, E. A. 2024, “Bifurcations of magnetic geodesic flows on surfaces
20. of revolution”, Russian Journal of Mathematical Physics (in print).
21. Fomenko, A. T. & Zieschang, H. 1987, “On the topology of the three-dimensional manifolds
22. arising in Hamiltonian mechanics”, Soviet Math. Dokl., vol. 35, no. 2, pp. 520–534.
23. Fomenko, A. T. 1988, “Topological invariants of Liouville integrable Hamiltonian systems”,
24. Funct. Anal. Appl., vol. 22, no. 4, pp. 286–296.
25. Fomenko, A. T. & Zieschang, H. 1991, “A topological invariant and a criterion for the equivalence
26. of integrable Hamiltonian systems with two degrees of freedom”, Math.USSR Izv., vol. 36, no. 3,
27. pp. 567–596.
28. Vedyushkina, V. V. & Pustovoitov, S. E. 2023, “Classification of Liouville foliations of integrable
29. topological billiards in magnetic fields”, Sb. Math., vol. 214, no. 2, pp. 166–196.
30. Bolsinov, A. V., Richter, P. H. & Fomenko, A. T. 2000, “The method of loop molecules and the
31. topology of the Kovalevskaya top”, Sb. Math., vol. 191, no. 2, pp. 151–188.
32. Efstathiou, K. & Giacobbe, A. 2012, “The topology associated with cusp singular points”,
33. Nonlinearity, vol. 25, pp. 3409–3422.
34. Bolsinov, A. V., Guglielmi, L. & Kudryavtseva, E. A. 2018, “Symplectic invariants for parabolic
35. orbits and cusp singularities of integrable systems with two degrees of freedom”, Philosophical
36. Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376,
37. no. 2131, 20170424.
38. Lerman, L. M. & Umanskii, Ya. L. 1987, “The structure of a Poisson action of 𝑅2 on a fourdimensional
39. symplectic manifold. I”, Selecta Math. Sov. (transl. from Russian preprint of 1981),
40. vol. 6, pp. 365–396.
41. Lerman, L. M. & Umanskii, Ya. L. 1994, “Classification of four-dimensional integrable Hamiltonian
42. systems and Poisson actions of 𝑅2 in extended neighborhoods of simple singular points.
43. I”, Russian Acad. Sci. Sb. Math., vol. 77, no. 2, pp. 511–542.
44. Kudryavtseva, E. & Martynchuk, N. 2021, “Existence of a smooth Hamiltonian circle action near
45. parabolic orbits and cuspidal tori”, Regular and Chaotic Dynamics, vol. 26, no. 6, pp. 732–741.
46. Kudryavtseva, E. A. 2022, “Hidden toric symmetry and structural stability of singularities in
47. integrable systems”, Europ. J. Math., vol. 8, pp. 1487–1549.
Review
For citations:
Kobtsev I.F., Kudryavtseva E.A. Bifurcations of magnetic geodesic flows on toric surfaces of revolution. Chebyshevskii Sbornik. 2025;26(2):125-140. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-2-125-140