Preview

Chebyshevskii Sbornik

Advanced search

Bifurcations of magnetic geodesic flows on toric surfaces of revolution

https://doi.org/10.22405/2226-8383-2025-26-2-125-140

Abstract

We study magnetic geodesic flows invariant under rotations on the 2-torus. The dynamical system is given by a generic pair of 2𝜋-periodic functions (𝑓, Λ), where the function Λ takes values in a circle if the magnetic field is not exact. Topology of the Liouville fibration of
the given integrable system near its singular orbits and singular fibers is decribed. Types of these singularities are computed. Topology of the Liouville fibration on regular 3-dimensional isoenergy manifolds is described by computing the Fomenko-Zieschang invariant. It is shown that Liouville fibrations for geodesic flow and non-exact magnetic geodesic flow on any isoenergy manifold have different topology. All possible bifurcation diagrams of the momentum maps of such integrable systems are described.

About the Authors

Ivan Fedorovich Kobtsev
Bauman Moscow State Technical University
Russian Federation


Elena Alexandrovna Kudryavtseva
Lomonosov Moscow State University; Moscow Center of Fundamental and Applied Mathematics
Russian Federation

doctor of physical and mathematical sciences



References

1. Bolsinov, A. V. & Fomenko, A. T. 2004, Integrable Hamiltonian systems: geometry, topology,

2. classification, Chapman & Hall /CRC, Boca Raton, London, N.Y., Washington.

3. Kantonistova, E. O. 2016, “Topological classification of integrable Hamiltonian systems in a

4. potential field on surfaces of revolution”, Sb. Math., vol. 207, no. 3, pp. 358–399.

5. Timonina, D. S. 2018, “Liouville classification of integrable geodesic flows in a potential field on

6. two-dimensional manifolds of revolution: the torus and the Klein bottle”, Sb. Math., vol. 209,

7. no. 11, pp. 1644–1676.

8. Antonov, E. I. & Kozlov, I. K. 2020, “Liouville classification of integrable geodesic flows on a

9. projective plane in potential field”, Chebyshevskii sbornik, vol. 21, no. 2, pp. 10–25.

10. Kozlov, I. & Oshemkov, A. 2017, “Integrable systems with linear periodic integral for the Lie

11. algebra 𝑒(3)”, Lobachevskii J. Math., vol. 38, pp. 1014–1026. https://doi.org/10.1134/

12. S1995080217060063

13. Kudryavtseva, E. A. & Oshemkov, A. A. 2020, “Bifurcations of integrable mechanival systems

14. with magnetic field on surfaces of revolution”, Chebyshevskii sbornik, vol. 21, no. 2, pp. 244–265.

15. Fomenko, A. T. 1987, “The topology of surfaces of constant energy in integrable Hamiltonian

16. systems, and obstructions to integrability”, Math. USSR-Izv., vol. 29, no. 3, pp. 629–658.

17. Fomenko, A. T. 1986. “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl.,

18. vol. 33, no. 2, pp. 502–506.

19. Kobtsev, I. F. & Kudryavtseva, E. A. 2024, “Bifurcations of magnetic geodesic flows on surfaces

20. of revolution”, Russian Journal of Mathematical Physics (in print).

21. Fomenko, A. T. & Zieschang, H. 1987, “On the topology of the three-dimensional manifolds

22. arising in Hamiltonian mechanics”, Soviet Math. Dokl., vol. 35, no. 2, pp. 520–534.

23. Fomenko, A. T. 1988, “Topological invariants of Liouville integrable Hamiltonian systems”,

24. Funct. Anal. Appl., vol. 22, no. 4, pp. 286–296.

25. Fomenko, A. T. & Zieschang, H. 1991, “A topological invariant and a criterion for the equivalence

26. of integrable Hamiltonian systems with two degrees of freedom”, Math.USSR Izv., vol. 36, no. 3,

27. pp. 567–596.

28. Vedyushkina, V. V. & Pustovoitov, S. E. 2023, “Classification of Liouville foliations of integrable

29. topological billiards in magnetic fields”, Sb. Math., vol. 214, no. 2, pp. 166–196.

30. Bolsinov, A. V., Richter, P. H. & Fomenko, A. T. 2000, “The method of loop molecules and the

31. topology of the Kovalevskaya top”, Sb. Math., vol. 191, no. 2, pp. 151–188.

32. Efstathiou, K. & Giacobbe, A. 2012, “The topology associated with cusp singular points”,

33. Nonlinearity, vol. 25, pp. 3409–3422.

34. Bolsinov, A. V., Guglielmi, L. & Kudryavtseva, E. A. 2018, “Symplectic invariants for parabolic

35. orbits and cusp singularities of integrable systems with two degrees of freedom”, Philosophical

36. Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376,

37. no. 2131, 20170424.

38. Lerman, L. M. & Umanskii, Ya. L. 1987, “The structure of a Poisson action of 𝑅2 on a fourdimensional

39. symplectic manifold. I”, Selecta Math. Sov. (transl. from Russian preprint of 1981),

40. vol. 6, pp. 365–396.

41. Lerman, L. M. & Umanskii, Ya. L. 1994, “Classification of four-dimensional integrable Hamiltonian

42. systems and Poisson actions of 𝑅2 in extended neighborhoods of simple singular points.

43. I”, Russian Acad. Sci. Sb. Math., vol. 77, no. 2, pp. 511–542.

44. Kudryavtseva, E. & Martynchuk, N. 2021, “Existence of a smooth Hamiltonian circle action near

45. parabolic orbits and cuspidal tori”, Regular and Chaotic Dynamics, vol. 26, no. 6, pp. 732–741.

46. Kudryavtseva, E. A. 2022, “Hidden toric symmetry and structural stability of singularities in

47. integrable systems”, Europ. J. Math., vol. 8, pp. 1487–1549.


Review

For citations:


Kobtsev I.F., Kudryavtseva E.A. Bifurcations of magnetic geodesic flows on toric surfaces of revolution. Chebyshevskii Sbornik. 2025;26(2):125-140. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-2-125-140

Views: 8


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)