Preview

Chebyshevskii Sbornik

Advanced search

FAREY FRACTIONS AND PERMUTATIONS GENERATED BY FRACTIONAL PARTS {iα}

https://doi.org/10.22405/2226-8383-2014-15-1-195-203

Abstract

Let α ∈ (0; 1) be an irrational number. Study of the distribution of fractional parts {iα} on the interval (0; 1) is a classical question in number theory. In particular, H.Weyl proved that this sequence is uniformity distributed modulo 1. Since this work, various estimates for the remainder term of the asymptotic formula for the number of the sequence of points belonging to a given interval are actively investigated. Another type of problems about considered sequence are problems associated with the famous three lenghts theorem (Steinhaus conjecture), which state that a tiling of the unit interval generated by the points of the sequence, composed of intervals of two or three different lengths. Moreover, in the second case the length of the greatest inteval exactly equals the sum of the lengths of two other intervals. It was find out that the geometry of these tilings is closely connected with the first return maps for circle rotations, Hecke-Kesten problem on bounded remainder sets, combinatorics of Sturmian sequences, dynamics of two-color rotations of the circle , and some other problems. This paper deals to combinatorial properties of the sequence {iα}, such as permutations πα,n, generated by the points {iα}, 1 6 i 6 n. It is proved that there is a one-to-one correspondence between these permutations and the intervals of Farey tilings of the level n. Here Farey tiling of the level n is a tiling of the interval [0; 1] generated by irreducible rational fractions of the form a b with denominator 0 < b 6 n. The proof is based on one theorem of V.T.Sos, that allows to compute the permutation πα,n using only πα,n(1) and πα,n(n). Also we use the fact that the ends of intervals of the Farey coincide with the points of discontinuity of the functions {kα}−{lα}. As an application it is proved that there are exactly 1 + Pn k=2 ϕ(k) different permutations πα,n for any fixed n. Another our result states that the permutation πα,n uniquely determines permutations πα,m with n < m < πα,n(1) + πα,n(n) and does not uniquely determine the permutation πα,m with m = πα,n(1) + πα,n(n).

 

About the Author

A. V. Shutov
Владимирский Государственный Университет
Russian Federation


References

1. Бухштаб А. А. Теория чисел. М.: Просвещение, 1966.

2. Журавлев В. Г. Двухцветные повороты единичной окружности // Изв. РАН. Сер. Мат. 2009. Т. 73, вып. 1. С. 79–120.

3. Журавлев В. Г. Одномерные разбиения Фибоначчи // Изв. РАН. Сер. Мат. 2007. Т. 71, вып. 2. С. 89–122.

4. Мануйлов Н. Н., Шутов А. В. Глобальный порядок разбиения окружности // "Молодеж. Образование. Экономика" : сборник научных статей участников 5-ой Всероссийской научно-практической конференции молодых ученых, аспирантов и студентов. (4 мая 2004). Ярославль: Изд. Ремдер. 2004. С. 314–320.

5. Мартынов А. В. Отношение порядка диофантового типа // Чебышевский сборник. 2001. Т. 2 С. 61–72.

6. Шутов А. В. Неоднородные диофантовы приближения и распределение дробных долей // Фундаментальная и прикладная математика. 2010. Т. 16, вып. 6. С. 189–202.

7. Шутов А. В. О распределении дробных долей // Чебышевский сборник. 2004. Т. 5, вып. 3. С. 112–121.

8. Шутов А. В. О распределении дробных долей II // Исследования по алгебре, теории чисел, функциональному анализу и смежным вопросам. : Межвуз. сб. науч. тр. Саратов: Из-во Саратовского Университета. 2005. Вып 3. С. 146–158.

9. Щутов А. В. Последовательности штурма: графы Рози и форсинг // Чебышевский сборник. 2007. Т. 8, вып. 2. С. 128–139.

10. Шутов А. В. Производные поворотов окружности и подобие орбит // Записки научных семинаров ПОМИ. 2004. Т. 314. С. 272–284.

11. Шутов А. В. Системы счисления и множества ограниченного остатка // Чебышевский сборник. 2006. Т. 7, вып. 3. С. 110–128.

12. Alessandri P., Berthe V. Three distance theorems and combinatorics on words // L’Enseignement Mathematique. 1998. Vol. 44. P. 103–132.

13. Baxa C. Comparing the distribution of (nα)-sequences // Acta Arithmetica. 2002. Vol. 94 P. 345–363.

14. Behnke H. Zur Theorie der diophantischen Approximationen I // Abh. Math. Sem. Hamburg. 1924. Vol. 3. P. 261–318.

15. Boyd D. W., Steele J. M. Monotone subsequences in the sequence of fractional parts of multiplies of ann irrational. // J. Reine Angew. Math. 1979. №306. P. 49=-59.

16. O’Bryant K., Sturmian Words and the Permutation that Orders Fractional Parts // Journal of Algebraic combinatoric. 2004. Vol. 19. №1. P. 91–115.

17. Farey J., On a Curious Property of Vulgar Fractions // London, Edinburgh and Dublin Phil. Mag. 1816. Vol. 47. P. 385.

18. Hardy G. H., Wright E. M. An introduction to the theory of numbers. Oxford: Clarendon press, 1975. 19. Hecke E. Eber Analytische Funktionen und die Verteilung van Zahlen mod Eins // Math.Sem.Hamburg Univ. 1921. Vol. 5. P. 54–76.

19. Kesten H. On a conjecture of Erd¨os and Sz¨usz related to uniform distribution mod 1 // Acta Arithmetica. 1966. Vol. 12. P. 193–212.

20. Van Ravenstein T. The three gap theorem (Steinhaus conjecture) // Journal of the Australian Mathematical Society. 1988. Vol. 45. №3. P. 360–370.

21. Slater N. B. Gaps and steps for the sequence nθ mod 1 // Proc.Cambridge Phil.Soc. 1967. Vol. 63. P. 1115–1123.

22. Swierczkowski S. On successive settings of an arc on the circumference of a circle // Fundam. Math. 1958. Vol. 46. P. 187–189.

23. Shutov A.V. New estimates in the Hecke-Kesten problem // Anal. Probab. Methods Number Theory. Edited by E.Manstaviˇcisus et al. Vilnius:TEV. 2007.

24. Sos V. T. A l´ankt¨ortek egy geometriai interpret´aci´oja ´es alkalmaz´asai // Mat.Lapok. 1957. Vol. 8. P. 248–263.

25. Walfisz, A. Weyl’sche Exponentialsummen in der neueren Zahlentheorie. Ch. 5. Berlin: Deutscher Verlag der Wissenschaften. 1963.

26. Weyl H. Uber die Gibbs’sche Erscheinung und verwandte Konvergenzp ¨ h¨anomene // Rendicontidel Circolo Mathematico di Palermo. 1910. Vol. 30. P. 377–407.


Review

For citations:


Shutov A.V. FAREY FRACTIONS AND PERMUTATIONS GENERATED BY FRACTIONAL PARTS {iα}. Chebyshevskii Sbornik. 2014;15(1):195-203. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-195-203

Views: 466


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)