Preview

Chebyshevskii Sbornik

Advanced search

ABOUT VARIETY 3N OF LEIBNIZ ALGEBRAS AND ITS SUBVARIETIES

https://doi.org/10.22405/2226-8383-2014-15-1-155-185

Abstract

Article represents the review of properties of variety left nilpotent of the class not more than 3 Leibniz algebras and its subvarieties. The characteristic of basic field will be equal to zero. A Leibniz algebra is an algebra with multiplication satisfying the Leibniz identity (xy)z = (xz)y + x(yz). In other words, the operator of right multiplication is a derivation of the algebra. Since Leibniz identity equivalent to the Jacobi identity, in case multiplication in Leibniz algebra is anti-commutative, it is obvious that the Leibniz algebras are generalizations of concept of Lie algebtras. The variety 3N is defined by identity x(y(zt)) ≡ 0 possesses some extreme properties (properties, which any its own subvariety possesses, while the variety doesn’t possess them). As the basic field has zero characteristic zero, then any identity is equivalent to the system of multilinear identities, that allows to use well-developed theory of representations of the symmetric group. In addition to using the classical results of the structural theory of rings and linear algebras, representation theory, as well as the structural theory of varieties of associative algebras, and the use of original asymptotic and combinatorial arguments with application identities and Young diagrams allowed to receive the following results: the variety 3N has almost exponential growth, almost polynomial growth of colength, almost finite multiplicity. Moreover, this variety has almost associative type, that is his own cocharacter any subvarieties lies in the hook. In this work are considered also subvarieties of variety 3N: held description of the complete list of varieties with almost polynomial growth; proved integrality of exponents any proper subvariety of variety 3N.

 

About the Authors

T. V. Skoraya
Ульяновский государственный университет
Russian Federation


Yu. Yu. Frolova
Ульяновский государственный университет
Russian Federation


References

1. Bahturin Yu. A. Identities in Lie algebras. M.: "Nauka" 1985.

2. Blokh A. M. A generalization of the concept of a Lie algebra // Sov. MAth. Dokl. M.:"Nauka" 1965. №3. P.471–473.

3. Malcev A. . On algebras defined by identieties // Mat. Sb. 1950, Vol. 26, №1, P. 19–33.

4. Abanina L. E., Mishchenko S.P. The variety of Leibniz algebras defined by the identity x(y(zt)) ≡ 0 // Sedrica Math. J. 2003. №3. P.291-300.

5. Abanina L.Е., Ratssev S. М. A Leibniz variety connected with standart identities // Vestnik of Samara state University, natural scientific series, 2005. №6. P. 36– 50.

6. Abanina L. Е., Mishchenko S. P. Some varieties of Leibniz algebras // mathematical methods and applications. proceedings of the ninth mathematical conference of MSSU. 2002. P.95–99.

7. Mishchenko S. P., Shishkina Т. V. On almost polynomial growth varieties of Leibniz algebras with the identity x(y(zt)) ≡ 0 // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 2010. №3. P. 18–23.

8. Higgins P. J. Lie rings satisfying the Engel condition // Proc. Cambr. Philos. Soc. 1954. Vol. 50, №1. V. 8-15.

9. Mishchenko S. P. Colored Young diagrams // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 1993. №1. P.90–91.

10. Mishchenko S. P., Cherevatenko O. I. Necessary and succient conditions for a variety of Leibniz algebras to have polynomial growth // Fundam. Prikl. Mat. 2006. Vol. 12, № 8. P.207–215.

11. Frolova Yu. Yu. Burnside type problems for Leibniz algebras: dis. ... candidate of physical and mathematical sciences. Ulyanovsk, 2011. 85p.

12. Mishchenko S. P., Petrogradsky V .M., Regev A. Poisson PI algebras // Transactions of the American Mathematical Society. 2007. Vol. 359, №10. P.4669-4694.

13. Zaicev М. V., Mishchenko S. P. A new extremal property of the variety AN2 of Lie algebras // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika. 1999. №5. P.18–23.

14. Shishkina, Т. V. About integrality of exponent subvarieties of variety 3N // Scientific notes of the Ulyanovsk state university. Series of the mathematic and information technologies. 2011. P. 18–23.

15. Giambruno A., Mishchenko S., Zaicev M. Codimensions of Algebras and Growth Functions // Advances of mathematics. 2008. №217. P.1027–1052.

16. Giambruno A., Zaicev M. V. Exponential codimension growth of PI algebras: an exact estimate // Adv. Math. 1999. Vol. 142. P.221–243.

17. Giambruno A., Zaicev M. V. On codimension growth of finitely generated associative algebras // Adv. Math. 1998. Vol. 140. P.145–155.

18. Mishchenko S. P., Zaicev M.V. An example of a variety of Lie algebras with a fractional exponent // Algebra, 11. J. Math. Sci. New York, 1993. №6. P.977– 982.


Review

For citations:


Skoraya T.V., Frolova Yu.Yu. ABOUT VARIETY 3N OF LEIBNIZ ALGEBRAS AND ITS SUBVARIETIES. Chebyshevskii Sbornik. 2014;15(1):155-185. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-155-185

Views: 404


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)