New bounds on Borsuk’s problem in ℓ𝑝-spaces
https://doi.org/10.22405/2226-8383-2025-26-1-142-148
Abstract
In 2013, Andriy Bondarenko constructed a two-distance set on the unit sphere 𝑆^64 ⊂ R^65, consisting of 416 points that cannot be partitioned into 83 parts of smaller diameter. In this paper, we show that this construction works not only for the Euclidean space but for all ℓ𝑝-spaces.
About the Author
Islam AhmedRussian Federation
postgraduate student
References
1. Bondarenko, A. 2014, “On Borsuk’s Conjecture for Two-Distance Sets”, Discrete Comput. Geom.
2. Borsuk, K. 1933, “Drei S¨atze ¨uber die n-dimensionale Euklidische Sph¨are”, Fundamenta Math, vol. 20, pp. 177-–190.
3. Gr¨unbaum, B. 1957, “A simple proof of Borsuk’s conjecture in three dimensions”, Proc. Cambridge Philos. Soc., vol. 53, pp. 776—778.
4. Kahn, J. & Kalai, G. 1993, “A counterexample to Borsuk’s conjecture”, Bull. Am. Math. Soc. (New Ser), vol. 29, pp. 60—62.
5. Nilli, A. (1994), “On Borsuk’s problem”, in *Jerusalem Combinatorics, 1993*, pp. 209—210, American Mathematical Society, Providence.
6. Raigorodskii, A.M. 2008, “Around Borsuk’s conjecture”, J. Math. Sci., vol. 154(4), pp. 604—623.
7. Raigorodskii, A.M. 2001, “Borsuk’s problem and the chromatic numbers of some metric spaces”, Russian Mathematical Surveys, vol. 56(1), pp. 103—139.
8. Eggleston, H.G. 1955, “Covering a three-dimensional set with sets of smaller diameter”, J. London Math. Soc. (New Ser), vol. 30, pp. 11-–24.
9. Brouwer, A.E. & Jenrich, T. 2014, “A 64-dimensional counterexample to Borsuk’s conjecture”, The Electronic Journal of Combinatorics, vol. 24(4), #P4.29.
10. Gr¨unbaum, B. 1957, “Borsuk’s partition conjecture in Minkowski space”, Bull. Res. Council Israel Sec. F, vol. 7F, pp. 25—30.
11. Boltyanskii, V.G. & Gohberg, I.T. 1965, Results and Problems in Combinatorial Geometry, Cambridge Univ. Press, Cambridge.
12. Yu, L. & Zong, C. 2009, “On the blocking number and the covering number of a convex body”, Adv. Geom., vol. 9(1), pp. 13—29.
13. Wang, J. & Xue, F. 2022, “Borsuk’s partition problem in four-dimensional ℓ𝑝 space”, Preprint. Available at: http://dx.doi.org/10.48550/arXiv.2210.06264.
14. Raigorodskii, A.M. & Sagdeev, A. 2024, “A note on Borsuk’s problem in Minkowski spaces”, Doklady Mathematics, vol. 109, pp. 80-–83. Available at: https://doi.org/10.1134/S1064562424701849.
15. Cameron, P. 2004, “Strongly regular graphs. In: Topics in Algebraic Graph Theory”, Cambridge Univ. Press, Cambridge, pp. 203-–221.
16. Brouwer, A.E. & Van Maldeghem, H. 2022, “Strongly regular graphs”, Cambridge University Press.
Review
For citations:
Ahmed I. New bounds on Borsuk’s problem in ℓ𝑝-spaces. Chebyshevskii Sbornik. 2025;26(1):142-148. (In Russ.) https://doi.org/10.22405/2226-8383-2025-26-1-142-148