ON SOME PROPERTIES PALINDROMES OF AUTOMORPHISMS OF A FREE GROUP
https://doi.org/10.22405/2226-8383-2014-15-1-141-145
Abstract
Let Fn, n > 2 denote the free group generated by n letters x1, . . . , . . . , xn and Aut(Fn) be the automorphism group of Fn. Certain subgroup of the group Aut(Fn) are considered. First of all examine the palindromic automorphism group ПA(Fn). This group first defined Collins in [1], which is related to congruence subgroups of SL(n,Z), and symmetric automorphism group of the free group. It is calculate the center of the palindromic automorphism group. For this used combinatorics on words of the group Fn. Second theme of this paper connect with faithfulness of a linear representation of the group elementary palindromic automorphisms EПA(Fn). It is show that some concrete representation are not linear. For this use the subgroup IA(Fn) of group Aut(Fn) [15].
About the Author
A. I. NekritsuhinRussian Federation
References
1. Collins D. J. Palindromic automorphisms of free groups // Combinatorial and geometric group theory (Edinburgh, 1993) London Math. Soc. Lecture Note Ser., 204, Cambridge University Press Cambridge (1995). P. 63-72.
2. Некрицухин А. И. Палиндромические автоморфизмы свободной группы // Чебышевский сборник, 2008, Т. 9, Вып. 1. с. 148-152.
3. Некрицухин А. И. Нильпотентная аппроксимируемость группы палиндромических автоморфизмов свободной группы // Чебышевский сборник, 2010, Т. 11, Вып. 1, с. 199-201.
4. Cohen F. R., Metaftsis V., Prassidis S. On the linearity of the holomorph group of a free group on two generators // arXix: 0905.0295vI [math.GR] 3 May 2009.
5. Glover H. H., Jensen C. A. Geometry for palindromic automorphism groups of free groups // arXiv: math.GR/0112190 V1 18 Dec 2001.
6. Helling H. A note on the automorphism group of the rank two free group // J. Algebra, 223(2000), №2. P. 610–614.
7. Piggott A. Palindromic primitives and palindromic bases in the free group of rank two // J. Algebra, 3043(2006), №1. P. 359–366.
8. Gilman J., Keen L. Cutting sequences and palindromes // arXiv:math. GR/0803 0234.v1.3Mar2008.
9. Gilman J., Keen L. Enumerating palindromes in rank two free groups // arXiv: math.GR/0802 2731.v1.19Feb2008.
10. Kassel C., Reutenauer C. A palindromization map for the free group // arXiv: math.GR/0802 4359.v1.29Feb2008.
11. Bardakov V., Mikhailov R. On certain questions of the free group automorphisms theory // arXiv:math.GR/0701441.v1.16Jan2007.
12. Bardakov V., Shpilrain V., Tolstykh V. On palindromic and primitives widths of a free group // J. Algebra, 285(2005), №2. P. 574–585.
13. Бардаков В. Г. Линейные представления групп сопрягающих автоморфизмов и групп кос некоторых многообразий // Сиб. мат. журн. 2005. Т. 46, №1. С. 17–31.
14. Formanek E., Procesi C. The automorphism groups of a free group is not linear // J. Algebra, 149(1992), №2. P. 494–499.
15. Lyndon R., Schupp P. Combinatorial group theory. Springer-Verlag 1977.
Review
For citations:
Nekritsuhin A.I. ON SOME PROPERTIES PALINDROMES OF AUTOMORPHISMS OF A FREE GROUP. Chebyshevskii Sbornik. 2014;15(1):141-145. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-141-145