Preview

Chebyshevskii Sbornik

Advanced search

THE ESTIMATE OF THE IRRATIONALITY MEASURE OF NUMBER log 37/30

https://doi.org/10.22405/2226-8383-2014-15-1-131-140

Abstract

Lower estimates of the irrationality measure of logarithms of rational numbers considered by many foreign authors: M. Waldschmidt [1], A. Baker and G. W¨ustholz [2], A. Heimonen, T. Matala-aho, K. Va¨a¨na¨nen [3], Q. Wu [4], G. Rhin [5] and P. Toffin [6]. In their works they used various integral constructions, giving small linear forms from logarithms and other numbers, calculated asymptotic of integrals and coefficients of the linear forms using the saddle point method, Laplace theorem, evaluated the denominator coefficients of the linear forms using various schemes "reduction of prime numbers". Review of some methods from the theory of diophantine approximation of logarithms of rational numbers at that time was introduced in 2004 by V. Zudilin [7]. Then V. Kh. Salikhov in [8] considerably improved estimate of the irrationality measure of log 3, based on the same asymptotic methods, but used a new type of integral construction, which has property of symmetry. Subsequently, V. Kh. Salikhov due to usage of already complex symmetrized integral improved estimate of the irrationality measures of π [9]. In the future, this method (as applied to diophantine approximation of logarithms of rational numbers) was developed by his pupils: E. S. Zolotuhina [10, 11], M. Yu. Luchin [12, 13], E. B. Tomashevskaya [14]. It led to improvement estimates of the irrationality measure following numbers: µ(log(5/3)) 6 5.512... [14], µ(log(8/5)) < 5.9897... [12], µ(log(7/5)) 6 4.865... [14], µ(log(9/7)) 6 3.6455... [10], µ(log(7/4)) < 8.1004... [13]. In this paper due to usage the symmetrized real integral we obtain a new estimate of the irrationality measure of τ = log (37/30), µ(τ ) < 65.3358. First time estimate of the irrationality measure of log (37/30) was received in 1993 by A. Heimonen, T. Matala-aho, K. Va¨a¨na¨nen [1]. In their work they received a common criterion that allows to evaluate irrationality measure of numbers of the form log(1 − (r/s)), where r/s ∈ [−1, 1) (r, s ∈ N). As an example, they led a table with the resulting estimates at some values r/s. One of these values was the number r/s = −7/30, which gave following estimate: µ(log (37/30)) 6 619.5803... We also note, that for obtain a new estimate the optimal parameters of integral construction were calculated using the developed by the author of a computer program, which uses the Mathcad calculations.

About the Author

M. Yu. Luchin
Брянский государственный технический университет
Russian Federation


References

1. Waldschmidt M. Minorations de combinaisons lin´eaires de logarithmes de nombres alg´ebriques // Can. J. Math. 1993. Vol. 45. №1. P. 176 – 224.

2. Baker A., W¨ustholz G. Logarithmic forms and group varieties // J. Reine Angew. Math. 1993. Vol. 442. P. 19 – 62.

3. Heimonen A., Matala-aho T., Va¨a¨na¨nen K. On irrationality measures of the values of Gauss hypergeometric function // Manuscripta Math. 1993. Vol. 81. №1. P. 183 – 202.

4. Wu Q. On the linear independence measure of logarithms of rational numbers // Math. Comput. 2002. Vol. 72. №242. P. 901 – 911.

5. Rhin G. Approximants de Pad´e et mesures effectives d’irrationalit´e, S´eminaire de Th´eorie des Nombres (Paris 1985-86) // Progress in Math. 1987. Vol. 71 P. 155 – 164.

6. Rhin G., Toffin P. Approximants de Pad´e simultan´es de logarithmes // J. Number Theory. 1986. Vol. 24. P. 284 – 297.

7. Зудилин В. В. Эссе о мерах иррациональности π и других логарифмов // Чебышевский сборник. 2004. Т. 5. №2. С. 49 – 65.

8. Салихов В. Х. О мере иррациональности ln 3 // ДАН РФ. 2007. Т. 417, №6. С. 753 – 755.

9. Салихов В. Х. О мере иррациональности числа π // Математические за- метки. 2010. Т. 88, №4. С. 583 – 593.

10. Золотухина Е.С. Диофантовы приближения некоторых логарифмов: дис. ... канд. физ.-мат. наук. Брянск, 2009. 100 с.

11. Сальникова Е.С. Приближения некоторых логарифмов числами из полей Q и Q( √ d) // Фундам. и прикл. математика. 2010. Т. 16, №6. С. 139 – 155.

12. Лучин М.Ю. О диофантовых приближениях некоторых логарифмов // Вестник Брянского государственного университета. 2012. №4 (2). С. 22 – 28.

13. Лучин М.Ю. Оценка меры иррациональности числа ln7 4 // Чебышевский сборник. 2013. Т. 14. №2. С. 123 – 131.

14. Томашевская E.Б. О диофантовых приближениях значений функции log x // Фундам. и прикл. математика. 2010. Т. 16 №6. С. 157 – 166.

15. Hata M. Rational approximations to π and some other numbers // Acta Arith. 1993. Vol. 63. №4. P. 335 – 349.


Review

For citations:


Luchin M.Yu. THE ESTIMATE OF THE IRRATIONALITY MEASURE OF NUMBER log 37/30. Chebyshevskii Sbornik. 2014;15(1):131-140. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-131-140

Views: 484


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)