Preview

Chebyshevskii Sbornik

Advanced search

GENERATING SETS OF THE N-ARY GROUPS

https://doi.org/10.22405/2226-8383-2014-15-1-89-109

Abstract

Definition of n-ary group is obtained from the definition of group by replacement of associative and reversible binary operation on n-ary associative operation, uniquely reversible at each site. In this paper we study the connection between the generating sets n-ary group and the generating sets the group to which reducible given n-ary group, according to Post - Gluskin - Hossu theorem. In the first part of the article describes the process that allows knowing the generating set of the group to which this is reducible n-ary group in accordance with this theorem, find a generating set of the most n-ary group. We prove that if the group hA, ◦ai, obtained by an element a of n-ary group hA, [ ]i in accordance with Post-Gluskin-Hossu theorem, generated by a set M, then n-ary group hA, [ ]i generated by a set M ∪ {a}. n-Ary group hA, [ ]i called derived of group A, if [a1a2 . . . an] = a1a2 . . . an for any a1, a2, . . . , an ∈ A. Found conditions under which generating sets the group and n-ary group, derived of this group, are identical. We prove that the n-ary group hA, [ ]i, derived of group hA, ◦i with identity e and generating set M, is generated by a set M too, if c1 ◦ c2 ◦ . . . ◦ cm(n−1)+1 = e for some c1, c2, . . . , cm(n−1)+1 ∈ M, m > 1. From this we deduce corollary: n-ary group hA, [ ]i, derived of group hA, ◦i finite period m(n−1)+ 1 > 3 with generating set M, is generated by a set M too. In specifically, n-ary group hA, [ ]i, derived of cyclic group hA, ◦i of order m(n − 1) + 1 > 3 is cyclic and is generated by the same element that group hA, ◦i. Are a few examples of finding generating sets for n-ary groups . In the second part we study the inverse problem of finding generators sets of binary groups, if we know the generating sets of n-ary groups from which this binary groups are obtained (according to the Post-Gluskin-Hossu theorem). Proved that the group hA, ◦ai, obtained by an element a of n-ary group hA, [ ]i with generating set M, generated by the set M ∪ {d = [a . . . a | {z } n ]}, if the automorphism β(x) = [axa a . . . a ¯ | {z } n−3 ] of group hA, ◦ai is satisfied Mβ = {[aMa a . . . a ¯ | {z } n−3 ]} ⊆ M. (2) From this we have the corollary: let n-ary group hA, [ ]i generated by a set M, satisfying (2) for some a ∈ M. Then: 1) the group hA, ◦ai generated by the set (M{a}) ∪ {d}; 2) if a – idempotent in hA, [ ]i, then the group hA, ◦ai generated by the set M{a}. At the end of the work described generating sets of binary groups hA, ◦ai, found from the known generating sets of n-ary groups hA, [ ]i with nonempty center Z(A). 

 

About the Authors

A. M. Gal’mak
Могилевский государственный университет продовольствия
Belarus


N. A. Shchuchkin
Волгоградский государственный социально-педагогический университет
Russian Federation


References

1. D¨ornte W. Untersuchungen ¨uber einen verallgemeinerten Gruppenbegrieff // Math. Z. 1928. Bd.29, S. 1–19.

2. Post E. L. Poluadic groups // Trans. Amer. Math. Soc. 48. 1940. — P. 208–350.

3. Тютин В. И. К аксиоматике n-арных групп // Докл. АН БССР, 1985. Т. 29, №8. С. 691–693.

4. Гальмак А. М. Об определении n-арной группы // Междунар. конф. по алгебре - тез. докл. - Новосибирск, 1991. — С. 30.

5. Гальмак А. М. n-Арные группы. Ч. 2. Минск: Изд. центр БГУ, 2007. 324 с.

6. Гальмак А. М. n-Арные группы. Ч. I. Гомель: ГГУ им. Ф. Скорины, 2003. 196 с.

7. Глускин Л. М. Позиционные оперативы // Мат. сборник. 1965. Т. 68 (110), №3. С. 444–472.

8. Hosszu M. On the explicit form of n-group operacions. Publ. Math. 1963. Vol. 10. №1-4. P. 88–92.

9. Гальмак А. М., Воробьев Г. Н. Тернарные группы отражений. Минск: Беларуская навука. 1998. 128 с.

10. Щучкин Н. А. Подгруппы в полуциклических n-арных группах // Фундаментальная и прикладная математика. 2009. Т. 15, №2. С. 211–222.

11. Кусов В. М., Щучкин Н. А. Свободные абелевы полуциклические n-арные группы // Чебышевский сборник. 2011. Т. XII, вып. 2(38). С. 68–76.

12. Коксетер Г. С. М. , Мозер У. О. Дж. Порождающие элементы и определяющие соотношения дискретных групп. М: Наука, 1980. 240 с.

13. Русаков С. А. Алгебраические n-арные системы. Мн: Навука i тэхнiка, 1992. 245 с. 14. Щучкин Н. А. Полуциклические n−арные группы // Известия ГГУ им. Ф. Скорины. 2009. №3(54). С. 186–194.


Review

For citations:


Gal’mak A.M., Shchuchkin N.A. GENERATING SETS OF THE N-ARY GROUPS. Chebyshevskii Sbornik. 2014;15(1):89-109. (In Russ.) https://doi.org/10.22405/2226-8383-2014-15-1-89-109

Views: 551


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)