Size effects of micropolar medium in problem on the cylindrical body torsion
https://doi.org/10.22405/2226-8383-2024-25-5-262-276
Abstract
In this paper, a variational principle of Lagrange of micropolar theory of elasticity is formulated for a some boundary-value problems. Anisotropic, isotropic and centrally symmetric material are considered. The Ritz method is used to obtain a system of linear algebraic equations in a form of the tensor-block stiffness matrices. The macro-displacement and the micro-rotation are expressed as a sum of products of shape functions and the generalized kinematic nodal fields. For effective approximation of the nearly incompressible micropolar material the generalized
method of reduced and selective integration is used. For testing of described variational model the cylinder torsion problem of the classical and micropolar media is considered. Micropolar continuum exhibit substantial size effects in torsion(and bending)[18]: slender specimens are more rigid than anticipated via classical elasticity. Analytical solution which satisfy integral condition of torsion on the end faces is used.
About the Author
Alexander Vyacheslavovich RomanovRussian Federation
References
1. Pobedrya, B.E. 1995, “Chislennue metody v teorii uprugosti i plastichnosti: Uch. posobue, 2-e izd.”, M.: Izd-vo MGU.
2. Ciarlet, P. 1978, “The finite element method for elliptic problems”, New York, Oxford.
3. Sedov, L.I. 2004, “Mehanica sploshnoj sredu”, Spb.: Lanj,Vol.2 6-e izd.
4. Nowacki, W. 1975, “Teoria uprugosti”, M.: Mir.
5. Nikabadze, M.U. 2023, “Razvitie metoda ortogonalnuh polinomov v mehanike micropolyarnuh i klassicheskih uprugih tonkih tel”, M.: Izd-vo MGU imeny M.V. Lomonosova.
6. Nowacki, W. 1972, “Theory of micropolar elasticity”, Vienna, Springer-Verlag.
7. Eringen, A. 2012, “Microcontinuum field theories: I”, Foundations and solids. New York:
8. Springer-Verlag
9. Romanov, A.V. 2022, “A Variational Principle of Lagrange of the Micropolar Theory of
10. Elasticity in the Case of Transversely Isotropic Medium”, Moscow Univ. Mech. Bull., 77, pp.
11. -–98. URL: https://doi.org/10.3103/S0027133022040045
12. Romanov, A.V. 2023, “On the Variational Principle of Lagrange of the Micropolar Elasticity
13. Theory in the Case of Orthotropic Medium”, Moscow Univ. Mech. Bull., 78, pp. 23-–28. URL:
14. https://doi.org/10.3103/S0027133023010041
15. Romanov, A.V. 2023, “On the Variational Principle of Lagrange in the Micropolar Theory of
16. Elasticity at Nonisothermal Processes”, Moscow Univ. Mech. Bull., 78, pp. 114—118. URL:
17. https://doi.org/10.3103/S0027133023040052
18. Romanov, A.V. 2024, “Reduced and selective integration method for micropolar theory of
19. elasticity”, Moscow Univ. Mech. Bull., № 1. pp. 65–69. https://dx.doi.org/10.55959/
20. MSU0579-9368-1-65-1-8
21. Nikabadze, M.U. 2017, “Topics on tensor calculus with applications to mechanics”, J. Math. Sci., 225, № 1. URL: https://doi.org/10.1007/s10958-017-3467-4
22. Pobedrya, B.E., Georgievsky D.V. 2018, “Lekcii po teorii uprugosti”, M.: Lenland, 208 p.
23. Zienkiewicz, O. C., Taylor, R. L., Zhu, J.Z. 2013, “The Finite Element Method: Its Basis and Fundamentals”, Oxford: Butterworth-Heinemann, 7th ed.
24. Gauthier, R. D., Analytical and Experimental Investigations in Linear Isotropic Micropolar
25. Elasticity. Doctoral dissertation, University of Colorado, 1974.
26. Gauthier, R, Jahsman, W. 1975, “A quest for micropolar elastic constants”, J. Appl. Mech., 42(2):369–74. URL: https://doi.org/10.1115/1.3423583
27. Grbˇci´c, S., Ibrahimbegovi´c, A., Jeleni´c, G. 2018, “Variational formulation of micropolar
28. elasticity using 3D hexahedral finite-element interpolation with incompatible modes”. URL:
29. https://doi.org/10.1016/j.compstruc.2018.04.005
30. Rueger, Z., Lakes, R. S. 2016, “Experimental Cosserat elasticity in open cell polymer foam”, Philosophical Magazine, 96 (2), pp. 93–111. https://doi.org/10.1080/14786435.2015.1125541
Review
For citations:
Romanov A.V. Size effects of micropolar medium in problem on the cylindrical body torsion. Chebyshevskii Sbornik. 2024;25(5):262-276. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-262-276