Preview

Chebyshevskii Sbornik

Advanced search

On question about semi-modularity of lattice of subgroups of finite groups

https://doi.org/10.22405/2226-8383-2024-25-5-254-261

Abstract

This article considers finite groups whose lattice of subgroups satisfy certain generalized semi-modularity conditions. The main result is the theorem: the lattice of subgroups of the finite group 𝐺 is 1-lower semi-modular whenever the lattice of subgroups of 𝐺 is upper semimodular and the lattice of subgroups of any proper subgroup of 𝐺 is lower semi-modular.

About the Authors

Igor Andreevich Tsybin
Kuban State University
Russian Federation


Georgy Nikolaevich Titov
Kuban State University
Russian Federation

candidate of physical and mathematical sciences



References

1. Ito, N. 1951, “Note on (LM)-groups of finite order”, Kodai Math. Sem. Reports, pp. 1-6.

2. Iwasawa, K. 1943, “On the structure of infinite M-groups”, Jap. Journal of Math, vol. 18, pp.

3. -728.

4. Jones, A. W. 1946, “Semi-modular finite groups and the Burnside basis theorem”, Bull. Amer. Math. Soc., vol. 52, pp. 541-560.

5. Sato, S. 1949, “On groups and the lattices of subgroups”, Osaka Math. Journal, vol. 1, pp.

6. -149.

7. Suzuki, M. 1951, “On the lattice of subgroups of finite groups”, Trans. Amer. Math. Soc., vol. 70, pp. 345-371.

8. Chernikov, S. N. 1980, “Groups with given properties of a system of subgroups”, Nauka Publ., Moscow.

9. Titov, G. N. 2010, “On solvability of generalized semi-modular finite groups”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, vol. 1, pp. 66-69.

10. Titov, G. N. 2011, “On non-solvable 𝑀1-groups of given order”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, vol. 2, pp. 54-61.

11. Deinekina, A. A., Titov, G. N. 2023, “Finite groups with generalized semi-modular condition”, Algebra and applications: collection of scientific papers, pp. 16-31.

12. Kryukova, T. A., Titov, G. N. 2021, “Not-supersoluble groups with generalized semimodular condition of the subgroups system”, British Journal of Innovation in Science and Technology, vol. 4, no. 1, pp. 19-24.

13. Titov, G. N., Timofeeva, V. V. 2020, “Algorithm for finding steps of semi-modular finite lattice”, Science. Information. Technologies. Education: Proc. XIII International Scientific and Practical Conference NITO, Yekaterinburg, pp. 389-402.

14. Titov, G. N. 2022, “On finite groups with some upper semi-modularity conditions”, XIV

15. International Conference on group theory, dedicated to the memory of V. A. Belonogov, V.

16. A. Vedernikov and L. A. Shemetkov, p. 56.

17. Gorchakov, Yu. M. 1998, “Group theory”, TSU, Tver.

18. Kargapolov, M. I., Merzlyakov, Yu. I. 1982, “Fundamentals of Group Theory”, Nauka Publ., Moscow.

19. Kostrikin, A. I. 1977, “Introduction to algebra”, Nauka Publ., Moscow.

20. Hall, M. 1962, “Group theory”, IL Publ., Moscow.

21. Birkhoff, G. 1984, “Lattice theory”, Nauka Publ., Moscow.

22. Gr¨atzer, G. 1982, “Lattice theory”, Mir Publ., Moscow.

23. Suzuki, M. 1960, “Structure of a group and the structure of its lattice of subgroups”, IL Publ, Moscow.

24. Tsybin, I. A., “On question about semi-modularity of lattice of subgroups of finite groups”,

25. Materials of the international Scientific Conference for Undergraduate and Graduate Students and Young Scientists "Lomonosov-2024".


Review

For citations:


Tsybin I.A., Titov G.N. On question about semi-modularity of lattice of subgroups of finite groups. Chebyshevskii Sbornik. 2024;25(5):254-261. (In Russ.) https://doi.org/10.22405/2226-8383-2024-25-5-254-261

Views: 348


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2226-8383 (Print)